Edexcel Maths FP1

Mark Scheme Pack

2009-2014

January 2009 6667 Further Pure Mathematics FP1 (new) Mark Scheme

Question Number	Scheme	Marks
1		
	x - 3 is a factor	B1
	$f(x) = (x-3)(2x^2 - 2x + 1)$	M1 A1
	Attempt to solve quadratic i.e. $x = \frac{2 \pm \sqrt{4-8}}{4}$	M1
	$x = \frac{1 \pm i}{2}$	A1 [5]

Notes:

First and last terms in second bracket required for first M1 Use of correct quadratic formula for their equation for second M1

PMT

	estion nber	Scheme	Marks
2	(a)	$6\sum r^{2} + 4\sum r - \sum 1 = 6\frac{n}{6}(n+1)(2n+1) + 4\frac{n}{2}(n+1), -n$	M1 A1, B1
		$= \frac{n}{6}(12n^2 + 18n + 6 + 12n + 12 - 6) \text{ or } n(n+1)(2n+1) + (2n+1)n$	M1
		$=\frac{n}{6}(12n^2+30n+12) = n(2n^2+5n+2) = n(n+2)(2n+1) *$	A1 (5)
	(b)	$\sum_{r=1}^{20} (6r^2 + 4r - 1) - \sum_{r=1}^{10} (6r^2 + 4r - 1) = 20 \times 22 \times 41 - 10 \times 12 \times 21$	M1
		= 15520	A1 (2) [7]

(a) First M1 for first 2 terms, B1 for -nSecond M1 for attempt to expand and gather terms. Final A1 for correct solution only

(b) Require (r from 1 to 20) subtract (r from 1 to 10) and attempt to substitute for M1

Question Number	Scheme	Mark	<s< th=""></s<>
3 (a)	$xy = 25 = 5^2$ or $c = \pm 5$	B1	(1)
(b)	A has co-ords $(5, 5)$ and B has co-ords $(25, 1)$	B1	
	Mid point is at (15, 3)	M1A1	(3) [4]

(a) xy = 25 only B1, $c^2 = 25$ only B1, c = 5 only B1

(b) Both coordinates required for B1 Add theirs and divide by 2 on both for M1

Question Number	Scheme	Marks
4	When $n = 1$, LHS = $\frac{1}{1 \times 2} = \frac{1}{2}$, RHS = $\frac{1}{1+1} = \frac{1}{2}$. So LHS = RHS and result true for $n = 1$	B1
	Assume true for $n = k$; $\sum_{r=1}^{k} \frac{1}{r(r+1)} = \frac{k}{k+1}$ and so $\sum_{r=1}^{k+1} \frac{1}{r(r+1)} = \frac{k}{k+1} + \frac{1}{(k+1)(k+2)}$	M1
	$\sum_{r=1}^{k+1} \frac{1}{r(r+1)} = \frac{k(k+2)+1}{(k+1)(k+2)} = \frac{k^2+2k+1}{(k+1)(k+2)} = \frac{(k+1)^2}{(k+1)(k+2)} = \frac{k+1}{k+2}$	M1 A1
	and so result is true for $n = k + 1$ (and by induction true for $n \in \mathbb{Z}^+$)	B1 [5]

Evaluate both sides for first B1 Final two terms on second line for first M1 Attempt to find common denominator for second M1. Second M1 dependent upon first. k + 1

 $\frac{k+1}{k+2} \text{ for A1}$

'Assume true for n = k 'and 'so result true for n = k + 1' and correct solution for final B1

Question Number		Scheme	Marks
5	(a)	attempt evaluation of $f(1.1)$ and $f(1.2)$ (– looking for sign change)	M1
		$f(1.1) = 0.30875$, $f(1.2) = -0.28199$ Change of sign in $f(x) \Longrightarrow$ root in the interval	A1 (2)
	(b)	$f'(x) = \frac{3}{2}x^{-\frac{1}{2}} - 9x^{-\frac{1}{2}}$	M1 A1 A1 (3)
	(c)	f(1.1) = 0.30875 $f'(1.1) = -6.37086$	B1 B1
		$x_1 = 1.1 - \frac{0.30875}{-6.37086}$	M1
		= 1.15(to 3 sig.figs.)	A1 (4) [9]

(a) awrt 0.3 and -0.3 and indication of sign change for first A1 $\,$

(b) Multiply by power and subtract 1 from power for evidence of differentiation and award of first M1

(c) awrt 0.309 B1and awrt -6.37 B1 if answer incorrect

Evidence of Newton-Raphson for M1

Evidence of Newton-Raphson and awrt 1.15 award 4/4

Question Number	Scheme	Marks
6	At $n = 1$, $u_n = 5 \times 6^0 + 1 = 6$ and so result true for $n = 1$	B1
	Assume true for $n = k$; $u_k = 5 \times 6^{k-1} + 1$, and so $u_{k+1} = 6(5 \times 6^{k-1} + 1) - 5$	M1, A1
	$\therefore u_{k+1} = 5 \times 6^k + 6 - 5 \therefore u_{k+1} = 5 \times 6^k + 1$	A1
	and so result is true for $n = k + 1$ and by induction true for $n \ge 1$	B1 [5]

6 and so result true for n = 1 award B1

Sub u_k into u_{k+1} or M1 and A1 for correct expression on right hand of line 2

Second A1 for $\therefore u_{k+1} = 5 \times 6^k + 1$

'Assume true for n = k' and 'so result is true for n = k + 1' and correct solution for final B1

			1
	stion nber	Scheme	Marks
7	(a)	The determinant is <i>a</i> - 2	M1
		$\mathbf{X}^{-1} = \frac{1}{a-2} \begin{pmatrix} -1 & -a \\ 1 & 2 \end{pmatrix}$	M1 A1 (3)
	(b)	$\mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	B1
		Attempt to solve $2 - \frac{1}{a-2} = 1$, or $a - \frac{a}{a-2} = 0$, or $-1 + \frac{1}{a-2} = 0$, or $-1 + \frac{2}{a-2} = 1$	M1
		To obtain $a = 3$ only	A1 cso (3) [6]
		Alternatives for (b) If they use $X^2 + I = X$ they need to identify I for B1, then attempt to solve suitable equation for M1 and obtain $a = 3$ for A1 If they use $X^2 + X^{-1} = O$, they can score the B1then marks for solving If they use $X^3 + I = O$ they need to identify I for B1, then attempt to solve suitable equation for M1 and obtain $a = 3$ for A1	

(a) Attempt *ad-bc* for first M1

$$\frac{1}{\det} \begin{pmatrix} -1 & -a \\ 1 & 2 \end{pmatrix}$$
 for second M1
(b) Final A1 for correct solution only

Ques Num		Scheme	Marks
8	(a)	$\frac{dy}{dx} = a^{\frac{1}{2}}x^{-\frac{1}{2}} \qquad \text{or } 2y\frac{dy}{dx} = 4a$ The gradient of the tangent is $\frac{1}{a}$	M1 A1
		The equation of the tangent is $y - 2aq = \frac{1}{q}(x - aq^2)$ So $yq = x + aq^2$ *	M1 A1
	(b)	R has coordinates (0, aq)	(4) B1
		The line <i>l</i> has equation $y - aq = -qx$	M1A1 (3)
	(c)	When $y = 0$ $x = a$ (so line <i>l</i> passes through $(a, 0)$ the focus of the parabola.)	B1 (1)
	(d)	Line <i>l</i> meets the directrix when $x = -a$: Then $y = 2aq$. So coordinates are (- <i>a</i> , 2 <i>aq</i>)	M1:A1 (2) [10]

(a) $\frac{dy}{dx} = \frac{2a}{2aq}$ OK for M1 Use of y = mx + c to find *c* OK for second M1 Correct solution only for final A1

(b) -1/(their gradient in part a) in equation OK for M1

(c) They must attempt y = 0 or x = a to show correct coordinates of R for B1

(d) Substitute x = -a for M1. Both coordinates correct for A1.

			1
Quest Numb		Scheme	Marks
9	(a)	$z_2 = \frac{12 - 5i}{3 + 2i} \times \frac{3 - 2i}{3 - 2i} = \frac{36 - 24i - 15i - 10}{13}$ $= 2 - 3i$	M1 A1
	(b)	P(3, 2) $Re z$	(2)
	(c)	$Q(2,-3) \qquad P: B1, Q: B1ft$ grad. $OP \times \text{grad.} OQ = \frac{2}{3} \times -\frac{3}{2}$	B1, B1ft (2)
	OR	$= -1 \qquad \Rightarrow \angle POQ = \frac{\pi}{2} (\clubsuit)$ $\angle POX = \tan^{-1}\frac{2}{3}, \angle QOX = \tan^{-1}\frac{3}{2}$	
		$Tan(\angle POQ) = \frac{\frac{2}{3} + \frac{3}{2}}{1 - \frac{2}{3} \times \frac{3}{2}}$ M1	M1
		$\Rightarrow \angle POQ = \frac{\pi}{2} (\clubsuit) \qquad A1$	A1 (2)
		$z = \frac{3+2}{2} + \frac{2+(-3)}{2}i$	M1
		$=\frac{5}{2}-\frac{1}{2}i$	A1 (2)
	(e)	$= \frac{5}{2} - \frac{1}{2}i$ $r = \sqrt{\left(\frac{5}{2}\right)^2 + \left(-\frac{1}{2}\right)^2}$	M1 A1
		$=\frac{\sqrt{26}}{2}$ or exact equivalent	(2) [10]

(a)
$$\times \frac{3-2i}{3-2i}$$
 for M1

- (b) Position of points not clear award B1B0
- (c) Use of calculator / decimals award M1A0
- (d) Final answer must be in complex form for A1
- (e) Radius or diameter for M1

Ques Num		Scheme	Mark	S
10	(a)	A represents an enlargement scale factor $3\sqrt{2}$ (centre <i>O</i>)	M1 A1	
		B represents reflection in the line $y = x$ C represents a rotation of $\frac{\pi}{4}$, i.e.45° (anticlockwise) (about O)	B1 B1	(4)
	(b)	$\begin{pmatrix} 3 & -3 \\ 3 & 3 \end{pmatrix}$	M1 A1	(2)
	(c)	$ \begin{pmatrix} 3 & -3 \\ 3 & 3 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -3 & 3 \\ 3 & 3 \end{pmatrix} $	B1	(1)
	(d)	$ \begin{pmatrix} -3 & 3 \\ 3 & 3 \end{pmatrix} \begin{pmatrix} 0 - 15 & 4 \\ 0 & 15 & 21 \end{pmatrix} = \begin{pmatrix} 0 & 90 & 51 \\ 0 & 0 & 75 \end{pmatrix} $ so (0, 0), (90, 0) and (51, 75)	M1A1A1	A1 (4)
	(e)	Area of $\triangle OR'S'$ is $\frac{1}{2} \times 90 \times 75 = 3375$	B1	
		Determinant of E is -18 or use area scale factor of enlargement So area of $\triangle ORS$ is $3375 \div 18 = 187.5$		(3) [14]

(a) Enlargement for M1 $3\sqrt{2}$ for A1

(b) Answer incorrect, require CD for M1

(c) Answer given so require **DB** as shown for B1

(d) Coordinates as shown or written as $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 90 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 51 \\ 75 \end{pmatrix}$ for each A1

(e) 3375 B1 Divide by theirs for M1

June 2009 6667 Further Pure Mathematics FP1 (new) Mark Scheme

Question Number	Scheme	Marks
Q1 (a)	z, ^	B1 (1)
(b)	$ z_1 = \sqrt{2^2 + (-1)^2} = \sqrt{5}$ (or awrt 2.24)	M1 A1 (2)
(c)	$\alpha = \arctan\left(\frac{1}{2}\right) \text{ or } \arctan\left(-\frac{1}{2}\right)$ arg $z_1 = -0.46$ or 5.82 (awrt) (answer in degrees is A0 unless followed by correct	M1 A1 (2)
(d)	conversion) $\frac{-8+9i}{2-i} \times \frac{2+i}{2+i}$ $-16-8i+18i-9$	M1 A1 A1ft
	$= \frac{-16 - 8i + 18i - 9}{5} = -5 + 2i \text{ i.e. } a = -5 \text{ and } b = 2 \text{ or } -\frac{2}{5}a$ Alternative method to part (d)	(3) [8]
	-8+9i = (2-i)(a+bi), and so $2a+b = -8$ and $2b-a = 9$ and attempt to solve as far as equation in one variable	M1
Notes	So $a = -5$ and $b = 2$ (a) B1 needs both complex numbers as either points or vectors, in correct quadrants and with 'reasonably correct' relative scale	A1 A1cao
	(b) M1 Attempt at Pythagoras to find modulus of either complex numberA1 condone correct answer even if negative sign not seen in (-1) term	
	A0 for $\pm\sqrt{5}$ (c) arctan 2 is M0 unless followed by $\frac{3\pi}{2}$ + arctan 2 or $\frac{\pi}{2}$ - arctan 2 Need to be clear	
	 that argz = - 0.46 or 5.82 for A1 (d) M1 Multiply numerator and denominator by conjugate of their denominator A1 for -5 and A1 for 2i (should be simplified) 	
	Alternative scheme for (d) Allow slips in working for first M1	

Question Number	Scheme	Marks
Q2 (a)	$r(r+1)(r+3) = r^3 + 4r^2 + 3r$, so use $\sum r^3 + 4\sum r^2 + 3\sum r$	M1
	$=\frac{1}{4}n^{2}(n+1)^{2}+4\left(\frac{1}{6}n(n+1)(2n+1)\right)+3\left(\frac{1}{2}n(n+1)\right)$	A1 A1
	$=\frac{1}{12}n(n+1)\{3n(n+1)+8(2n+1)+18\} \text{ or } =\frac{1}{12}n\{3n^3+22n^2+45n+26\}$	
	or = $=\frac{1}{12}(n+1)\{3n^3+19n^2+26n\}$	M1 A1
(b)	$= \frac{1}{12}n(n+1)\left\{3n^2 + 19n + 26\right\} = \frac{1}{12}n(n+1)(n+2)(3n+13) \qquad (k=13)$ $\sum_{21}^{40} = \sum_{1}^{40} - \sum_{1}^{20}$	M1 A1cao (7) M1
	$=\frac{1}{12}(40 \times 41 \times 42 \times 133) - \frac{1}{12}(20 \times 21 \times 22 \times 73) = 763420 - 56210 = 707210$	A1 cao (2) [9]
Notes	(a) M1 expand and must start to use at least one standard formula	
	First 2 A marks: One wrong term A1 A0, two wrong terms A0 A0.	
	M1: Take out factor $kn(n + 1)$ or kn or $k(n + 1)$ directly or from quartic	
	A1: See scheme (cubics must be simplified)	
	M1: Complete method including a quadratic factor and attempt to factorise it	
	A1 Completely correct work.	
	Just gives $k = 13$, no working is 0 marks for the question.	
	Alternative method	
	Expands $(n + 1)(n + 2)(3n + k)$ and confirms that it equals	
	$\{3n^3 + 22n^2 + 45n + 26\}$ together with statement $k = 13$ can earn last M1A1	
	The previous M1A1 can be implied if they are using a quartic.	
	(b) M 1 is for substituting 40 and 20 into their answer to (a) and subtracting.(NB not 40 and 21)Adding terms is M0A0 as the question said "Hence"	

Question Number	Scheme	Marks
Q3 (a)	$x^2 + 4 = 0 \implies x = ki, x = \pm 2i$	M1, A1
	Solving 3-term quadratic	M1
	$x = \frac{-8 \pm \sqrt{64 - 100}}{2} = -4 + 3i \text{ and } -4 - 3i$	A1 A1ft
(b)	2i + (-2i) + (-4 + 3i) + (-4 - 3i) = -8	(5) M1 A1cso (2) [7]
	Alternative method : Expands $f(x)$ as quartic and chooses \pm coefficient of x^3	M1
	-8	A1 cso
Notes	 (a) Just x = 2i is M1 A0 x = ±2 is M0A0 M1 for solving quadratic follows usual conventions, then A1 for a correct root (simplified as here) and A1ft for conjugate of first answer. Accept correct answers with no working here. Do not give accuracy marks for factors unless followed by roots. (b) M1 for adding four roots of which at least two are complex conjugates and getting a real answer. A1 for -8 following correct roots or the alternative method. If any incorrect working in part (a) this A mark will be A0 	

Quest Numb		Scheme	Marl	<s< th=""></s<>
Q4	(a)	$f(2.2) = 2.2^3 - 2.2^2 - 6 \qquad (= -0.192)$	M1	
		$f(2.3) = 2.3^3 - 2.3^2 - 6 \qquad (= 0.877)$		
	(h)	Change of sign \Rightarrow Root need numerical values correct (to 1 s.f.).	A1	(2)
	(b)	$f'(x) = 3x^2 - 2x$	B1 B1	
		f'(2.2) = 10.12 $f(x_{e}) = -0.192$		-
		$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 2.2 - \frac{-0.192}{10.12}$	M1 A1ft	L
		= 2.219	A1cao	(5)
	(c)	$\frac{\alpha - 2.2}{\pm' 0.192'} = \frac{2.3 - \alpha}{\pm' 0.877'} \text{(or equivalent such as } \frac{k}{\pm' 0.192'} = \frac{0.1 - k}{\pm' 0.877'} \text{.)}$	M1	(3)
		$\alpha(0.877 + 0.192) = 2.3 \times 0.192 + 2.2 \times 0.877$	A1	
		or $k(0.877 + 0.192) = 0.1 \times 0.192$, where $\alpha = 2.2 + k$		
		so $\alpha \approx 2.218$ (2.21796) (Allow awrt)	A1	(3) [10]
Alternat	tive	Uses equation of line joining (2.2, -0.192) to (2.3, 0.877) and substitutes $y = 0$	M1	
		$y + 0.192 = \frac{0.192 + 0.877}{0.1}(x - 2.2)$ and $y = 0$, so $\alpha \approx 2.218$ or awrt as before	A1, A1	
		(NB Gradient = 10.69)		
Notes	;	(a) M1 for attempt at $f(2.2)$ and $f(2.3)$		
		A1 need indication that there is a change of sign – (could be $-0.19 \le 0, 0.88 \ge 0$) and		
		need conclusion. (These marks may be awarded in other parts of the question if not done in part (a))		
		(b) B1 for seeing correct derivative (but may be implied by later correct work)		
		B1 for seeing 10.12 or this may be implied by later work		
		M1 Attempt Newton-Raphson with their values		
		A1ft may be implied by the following answer (but does not require an evaluation)		
		Final A1 must 2.219 exactly as shown.So answer of 2.21897 would get 4/5		
		If done twice ignore second attempt		
		(c) M1 Attempt at ratio with their values of $\pm f(2.2)$ and $\pm f(2.3)$.		
		N.B. If you see $0.192 - \alpha$ or $0.877 - \alpha$ in the fraction then this is M0		
		A1 correct linear expression and definition of variable if not α (may be implied by		
		final correct answer- does not need 3 dp accuracy)		
		A1 for awrt 2.218		
		If done twice ignore second attempt		

Question Number	Scheme	Marks
Q5 (a)	$\mathbf{R}^2 = \begin{pmatrix} a^2 + 2a & 2a + 2b \\ a^2 + ab & 2a + b^2 \end{pmatrix}$	M1 A1 A1 (3)
(b)	Puts their $a^2 + 2a = 15$ or their $2a + b^2 = 15$ or their $(a^2 + 2a)(2a + b^2) - (a^2 + ab)(2a + 2b) = 225$ (or to 15),	M1,
	Puts their $a^2 + ab = 0$ or their $2a + 2b = 0$	M1
	Solve to find either <i>a</i> or <i>b</i>	M1
	a = 3, b = -3	A1, A1 (5) [8]
Alternative for (b)	Uses $\mathbf{R}^2 \times \text{column vector} = 15 \times \text{column vector}$, and equates rows to give two equations in <i>a</i> and <i>b</i> only Solves to find either <i>a</i> or <i>b</i> as above method	M1, M1 M1 A1 A1
Notes	(a) 1 term correct: M1 A0 A0 2 or 3 terms correct: M1 A1 A0	
	(b) M1 M1 as described in scheme (In the alternative scheme column vector can be general or specific for first M1 but must be specific for 2^{nd} M1) M1 requires solving equations to find <i>a</i> and/or <i>b</i> (though checking that correct answer satisfies the equations will earn this mark) This mark can be given independently of the first two method marks. So solving $M^2 = 15M$ for example gives M0M0M1A0A0 in part (b) Also putting leading diagonal = 0 and other diagonal = 15 is M0M0M1A0A0 (No possible solutions as $a > 0$) A1 A1 for correct answers only Any Extra answers given, e.g. $a = -5$ and $b = 5$ or wrong answers – deduct last A1 awarded So the two sets of answers would be A1 A0 Just the answer . $a = -5$ and $b = 5$ is A0 A0 Stopping at two values for <i>a</i> or for <i>b</i> – no attempt at other is A0A0 Answer with no working at all is 0 marks	

Question Number	Scheme	Marks
Q6 (a)	$y^2 = (8t)^2 = 64t^2$ and $16x = 16 \times 4t^2 = 64t^2$ Or identifies that $a = 4$ and uses general coordinates $(at^2, 2at)$	B1
(b)	Or identifies that $a = 4$ and uses general coordinates $(at^2, 2at)$ (4, 0)	(1) B1 (1)
(c)	$y = 4x^{\frac{1}{2}}$ $\frac{dy}{dx} = 2x^{-\frac{1}{2}}$	B1
	Replaces <i>x</i> by $4t^2$ to give gradient $[2(4t^2)^{-\frac{1}{2}} = \frac{2}{2t} = \frac{1}{t}]$	M1,
	Uses Gradient of normal is $-\frac{1}{\text{gradient of curve}}$ [-t]	M1
	$y - 8t = -t(x - 4t^2) \Rightarrow \qquad y + tx = 8t + 4t^3 \tag{(*)}$	M1 A1cso (5)
(d)	At N, $y = 0$, so $x = 8 + 4t^2$ or $\frac{8t + 4t^3}{t}$	B1
	Base $SN = (8+4t^2) - 4 \ (= 4+4t^2)$	B1ft
	Area of $\triangle PSN = \frac{1}{2}(4+4t^2)(8t) = 16t(1+t^2)$ or $16t+16t^3$ for $t > 0$	M1 A1 (4)
	{Also Area of $\triangle PSN = \frac{1}{2}(4+4t^2)(-8t) = -16t(1+t^2)$ for $t < 0$ } this is not required	[11]
	$\frac{\text{Alternatives:}}{(c) \frac{dx}{dt} = 8t \text{ and } \frac{dy}{dt} = 8 \text{ B1}$	
	$\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt} = \frac{1}{t}$ M1, then as in main scheme.	
	(c) $2y\frac{dy}{dx} = 16$ B1 (or uses $x = \frac{y^2}{8}$ to give $\frac{dx}{dy} = \frac{2y}{8}$)	
	$\frac{dy}{dx} = \frac{8}{y} = \frac{8}{8t} = \frac{1}{t}$ M1, then as in main scheme.	
Notes	(c) Second M1 – need not be function of t Third M1 requires linear equation (not fraction) and should include the parameter t but could be given for equation of tangent (So tangent equation loses 2 marks only and could gain B1M1M0M1A0) (d) Second B1 does not require simplification and may be a constant rather than an expression in t. M1 needs correct area of triangle formula using $\frac{1}{2}$ 'their SN' $\times 8t$	
	Or may use two triangles in which case need $(4t^2 - 4)$ and $(4t^2 + 8 - 4t^2)$ for B1ft Then Area of $\Delta PSN = \frac{1}{2}(4t^2 - 4)(8t) + \frac{1}{2}(4t^2 + 8 - 4t^2)(8t) = 16t(1+t^2)$ or $16t + 16t^3$	

edexcel

PMT

Question Number	Scheme	Marks
Q7 (a)	Use $4a - (-2 \times -1) = 0 \implies a_{,} = \frac{1}{2}$	M1, A1 (2)
(b)	Determinant: $(3 \times 4) - (-2 \times -1) = 10$ (Δ)	M1
	$\mathbf{B}^{-1} = \frac{1}{10} \begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix}$	M1 A1cso (3)
(c)	$\frac{1}{10} \begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} k-6 \\ 3k+12 \end{pmatrix}, = \frac{1}{10} \begin{pmatrix} 4(k-6)+2(3k+12) \\ (k-6)+3(3k+12) \end{pmatrix}$	M1, A1ft
	$\binom{k}{k+3}$ Lies on $y = x+3$	A1 (3) [8]
	$\frac{\text{Alternatives:}}{(c)} \begin{pmatrix} 3 & -2 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} x \\ x+3 \end{pmatrix}, = \begin{pmatrix} 3x-2(x+3) \\ -x+4(x+3) \end{pmatrix},$	M1, A1,
	$= \begin{pmatrix} x-6\\ 3x+12 \end{pmatrix}$, which was of the form $(k-6, 3k+12)$	A1
	Or $\begin{pmatrix} 3 & -2 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$, $= \begin{pmatrix} 3x - 2y \\ -x + 4y \end{pmatrix} = \begin{pmatrix} k - 6 \\ 3k + 12 \end{pmatrix}$, and solves simultaneous equations	M1
	Both equations correct and eliminate one letter to get $x = k$ or $y = k + 3$ or $10x - 10y = -30$ or equivalent.	A1
	Completely correct work (to $x = k$ and $y = k + 3$), and conclusion lies on $y = x + 3$	A1
Notes	 (a) Allow sign slips for first M1 (b) Allow sign slip for determinant for first M1 (This mark may be awarded for 1/10 appearing in inverse matrix.) Second M1 is for correctly treating the 2 by 2 matrix, ie for (4 2) 1 3) Watch out for determinant (3 + 4) - (-1 + -2) = 10 - M0 then final answer is A0 (c) M1 for multiplying matrix by appropriate column vector A1 correct work (ft wrong determinant) A1 for conclusion 	

Question Number	Scheme	Marks
Q8 (a)	f(1) = 5 + 8 + 3 = 16, (which is divisible by 4). (:. True for $n = 1$).	B1
	Using the formula to write down $f(k + 1)$, $f(k + 1) = 5^{k+1} + 8(k+1) + 3$	M1 A1
	$f(k+1) - f(k) = 5^{k+1} + 8(k+1) + 3 - 5^k - 8k - 3$ = 5(5 ^k) + 8k + 8 + 3 - 5 ^k - 8k - 3 = 4(5 ^k) + 8	M1 A1
	$f(k+1) = 4(5^{k}+2) + f(k)$, which is divisible by 4	A1ft
	∴ True for $n = k + 1$ if true for $n = k$. True for $n = 1$, ∴ true for all n .	A1cso (7)
(b)	For $n = 1$, $\binom{2n+1}{2n} = \binom{3}{2} - \binom{2}{2} = \binom{3}{2} - \binom{2}{2} - \binom{3}{2} = \binom{3}{2} - \binom{2}{2} - \binom{3}{2} - \binom{3}{2} + \binom{3}{2} - \binom{3}{2} + \binom{3}{2}$	B1
	$ \begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix}^{k+1} = \begin{pmatrix} 2k+1 & -2k \\ 2k & 1-2k \end{pmatrix} \begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} 2k+3 & -2k-2 \\ 2k+2 & -2k-1 \end{pmatrix} $	M1 A1 A1
	$= \begin{pmatrix} 2(k+1)+1 & -2(k+1) \\ 2(k+1) & 1-2(k+1) \end{pmatrix}$	M1 A1
	\therefore True for $n = k + 1$ if true for $n = k$. True for $n = 1$, \therefore true for all n	A1 cso (7) [14]
(a)	$f(k+1) = 5(5^k) + 8k + 8 + 3 $ M1	['']
Alternative for 2 nd M:	$= 4(5^{k}) + 8 + (5^{k} + 8k + 3) $ A1 or $= 5(5^{k} + 8k + 3) - 32k - 4$	
	$= 4(5k + 2) + f(k), \qquad \text{or} = 5f(k) - 4(8k+1)$ which is divisible by 4 A1 (or similar methods)	
Notes	 (a) B1 Correct values of 16 or 4 for n = 1 or for n = 0 (Accept "is a multiple of ") M1 Using the formula to write down f(k + 1) A1 Correct expression of f(k+1) (or for M1 Start method to connect f(k+1) with f(k) as shown A1 correct working toward multiples of 4, A1 ft result including f(k + 1) as subject, A10 conclusion 	f(<i>n</i> +1)
	(b) B1 correct statement for $n = 1$ or $n = 0$ First M1: Set up product of two appropriate matrices – product can be either way round A1 A0 for one or two slips in simplified result A1 A1 all correct simplified A0 A0 more than two slips M1: States in terms of $(k + 1)$	l
	A1 Correct statement A1 for induction conclusion May write $\begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix}^{k+1} = \begin{pmatrix} 2k+3 & -2k-2 \\ 2k+2 & -2k-1 \end{pmatrix}$. Then may or may not complete the proof	
Part (b) Alternative	This can be awarded the second M (substituting $k + 1$) and following A (simplification) The first three marks are awarded as before. Concluding that they have reached the sar therefore a result will then be part of final A1 cso but also need other statements as in the method.	in part (b). ne matrix and

January 2010 6667 Further Pure Mathematics FP1 Mark Scheme

Question Number	Scheme	Marks
Q1	(a) $\frac{z_1}{z_2} = \frac{2+8i}{1-i} \times \frac{1+i}{1+i}$ = $\frac{2+2i+8i-8}{2} = -3+5i$	M1 A1 A1 (3)
	(b) $\left \frac{z_1}{z_2} \right = \sqrt{(-3)^2 + 5^2} = \sqrt{34}$ (or awrt 5.83)	M1 A1ft (2)
	(c) $\tan \alpha = -\frac{5}{3}$ or $\frac{5}{3}$	M1
	$\arg\frac{z_1}{z_2} = \pi - 1.03 = 2.11$	A1 (2)
	Notes (a) $\times \frac{1+i}{1+i}$ and attempt to multiply out for M1 -3 for first A1, +5i for second A1 (b) Square root required without i for M1 $\frac{ z_1 }{ z_2 }$ award M1 for attempt at Pythagoras for both numerator and denominator (c) tan or \tan^{-1} , $\pm \frac{5}{3}$ or $\pm \frac{3}{5}$ seen with their 3 and 5 award M1 2.11 correct answer only award A1	

Question	Scheme	Marks
Q2	(a) $f(1.3) = -1.439$ and $f(1.4) = 0.268$ (allow awrt)	B1 (1)
	(b) $f(1.35) < 0$ (-0.568) \Rightarrow 1.35 < α < 1.4	M1 A1
	lumber scheme 2 (a) $f(1.3) = -1.439$ and $f(1.4) = 0.268$ (allow awrt) (b) $f(1.35) < 0$ (-0.568) \Rightarrow 1.35 < α < 1.4	A1 (3)
		M1 A1
	$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 1.4 - \frac{0.268}{16.417}, = 1.384$	M1 A1, A1 (5)
		[9]
	 (a) Both answers required for B1. Accept anything that rounds to 3dp values above. (b) f(1.35) or awrt -0.6 M1 (f(1.35) and awrt -0.6) AND (f(1.375) and awrt -0.1) for first A1 1.375 < α <1.4 or expression using brackets or equivalent in words for second A1 (c) One term correct for M1, both correct for A1 Correct formula seen or implied and attempt to substitute for M1 awrt 16.4 for second A1 which can be implied by correct final answer 	

Question Number	Scheme	Marks
Q3	For $n = 1$: $u_1 = 2$, $u_1 = 5^0 + 1 = 2$	B1
	Assume true for $n = k$:	
	$u_{k+1} = 5u_k - 4 = 5(5^{k-1} + 1) - 4 = 5^k + 5 - 4 = 5^k + 1$	M1 A1
	\therefore True for $n = k + 1$ if true for $n = k$.	
	True for $n = 1$,	
	\therefore true for all <i>n</i> .	A1 cso
		[4]
	Notes	
	Accept $u_1 = 1 + 1 = 2$ or above B1	
	$5(5^{k-1}+1) - 4$ seen award M1	
	$5^{k} + 1$ or $5^{(k+1)-1} + 1$ award first A1 All three elements stated somewhere in the solution award final A1	

PMT	Γ

Question Number	Scheme	Ма	rks
Q4	(a) (3, 0) cao	B1	(1
	(b) $P: x = \frac{1}{3} \implies y = 2$	B1	
	A and B lie on $x = -3$	B1	
	PB = PS or a correct method to find both PB and PS	M1	
	Perimeter = $6 + 2 + 3\frac{1}{3} + 3\frac{1}{3} = 14\frac{2}{3}$	M1 A1	(5 [6
	Notes (b) Both B marks can be implied by correct diagram with lengths labelled or coordinates of vertices stated. Second M1 for their four values added together.		
	$14\frac{2}{3}$ or awrt 14.7 for final A1		

Question	Scheme	Marks
Number		
Q5	(a) det $\mathbf{A} = a(a+4) - (-5 \times 2) = a^2 + 4a + 10$	M1 A1 (2)
	(b) $a^2 + 4a + 10 = (a+2)^2 + 6$	M1 A1ft
	Positive for all values of a , so A is non-singular	A1cso
	-	(3)
	(a) $\mathbf{A}^{-1} = 1 \begin{pmatrix} 4 & 5 \end{pmatrix}$ D1 for 1	
	(c) $\mathbf{A}^{-1} = \frac{1}{10} \begin{pmatrix} 4 & 5 \\ -2 & 0 \end{pmatrix}$ B1 for $\frac{1}{10}$	B1 M1 A1 (3) [8]
	Notes	
	(a) Correct use of $ad - bc$ for M1 (b) Attempt to complete square for M1	
	(b) Attempt to complete square for M1 Alt 1	
	Attempt to establish turning point (e.g. calculus, graph) M1	
	Minimum value 6 for A1ft	
	Positive for all values of <i>a</i> , so A is non-singular for A1 cso Alt 2	
	Attempt at $b^2 - 4ac$ for M1. Can be part of quadratic formula	
	Their correct -24 for first A1	
	No real roots or equivalent, so A is non-singular for final A1cso	
	(c) Swap leading diagonal, and change sign of other diagonal, with numbers or <i>a</i> for M1	
	Correct matrix independent of 'their $\frac{1}{10}$ award' final A1	
	10	

Question Number	Scheme	Mark	S
Q6	(a) 5 – 2i is a root	B1	(1)
	(b) $(x - (5 + 2i))(x - (5 - 2i)) = x^2 - 10x + 29$	M1 M1	
	$x^{3} - 12x^{2} + cx + d = (x^{2} - 10x + 29)(x - 2)$	M1	
	$c = 49, \qquad \qquad d = -58$	A1, A1	(5
	(c) Conjugate pair in 1 st and 4 th quadrants (symmetrical about real axis) Fully correct, labelled	B1 B1	(2
	(b) 1^{st} M: Form brackets using $(x - \alpha)(x - \beta)$ and expand. 2^{nd} M: Achieve a 3-term quadratic with no i's. (b) <u>Alternative</u> : Substitute a complex root (usually 5+2i) and expand brackets M1 $(5+2i)^3 - 12(5+2i)^2 + c(5+2i) + d = 0$ (125+150i - 60 - 8i) - 12(25+20i - 4) + (5c + 2ci) + d = 0 M1 $(2^{nd}$ M for achieving an expression with no powers of i) Equate real and imaginary parts M1 c = 49, $d = -58$ A1, A1		

Question	Scheme	Marks
Number Q7		
	(a) $y = \frac{c^2}{x}$ $\frac{dy}{dx} = -c^2 x^{-2}$	B1
	$\frac{dy}{dx} = -\frac{c^2}{(ct)^2} = -\frac{1}{t^2}$ without x or y	M1
	$y - \frac{c}{t} = -\frac{1}{t^2}(x - ct) \implies t^2 y + x = 2ct \qquad (*)$	M1 A1cso (4)
	(b) Substitute $(15c, -c)$: $-ct^2 + 15c = 2ct$	M1
	$t^2 + 2t - 15 = 0$	A1
	$(t+5)(t-3) = 0 \qquad \Rightarrow \qquad t = -5 t = 3$	M1 A1
	Points are $\left(-5c, -\frac{c}{5}\right)$ and $\left(3c, \frac{c}{3}\right)$ both	A1 (5) [9]
	(a) Use of $y - y_1 = m(x - x_1)$ where <i>m</i> is their gradient expression in terms of <i>c</i> and <i>c</i> or <i>t</i> only for second M1. Accept $y = mx + k$ and attempt to find <i>k</i> for second M1. (b) Correct absolute factors for their constant for second M1. Accept correct use of quadratic formula for second M1. Accept correct use of quadratic formula for second M1. Alternatives: (a) $\frac{dx}{dt} = c$ and $\frac{dy}{dt} = -ct^{-2}$ B1 $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt} = -\frac{1}{t^2}$ M1, then as in main scheme. (a) $y + x\frac{dy}{dx} = 0$ B1 $\frac{dy}{dx} = -\frac{y}{x} = -\frac{1}{t^2}$ M1, then as in main scheme.	

Question Number	Scheme		Mark	S
Q8	(a) $\sum_{r=1}^{1} r^3 = 1^3 = 1$ and $\frac{1}{4} \times 1^2 \times 2^2 = 1$	B1		
	Assume true for $n = k$: k = 1 $k = 1$ k	B1		
	$\sum_{r=1}^{k+1} r^3 = \frac{1}{4} k^2 (k+1)^2 + (k+1)^3$ $\frac{1}{4} (k+1)^2 \left[k^2 + 4(k+1) \right] = \frac{1}{4} (k+1)^2 (k+2)^2$	M1	A1	
	$4^{(n+1)} [n^{(n+1)}] = \frac{1}{4}^{(n+1)} (n+2)^{(n+2)}$ $\therefore \text{ True for } n = k+1 \text{ if true for } n = k.$ True for n = 1,	A1c	cso	
	\therefore true for all <i>n</i> .			(5)
	(b) $\sum r^3 + 3\sum r + \sum 2 = \frac{1}{4}n^2(n+1)^2 + 3\left(\frac{1}{2}n(n+1)\right), +2n$	B1,	B1	
	$=\frac{1}{4}n[n(n+1)^2+6(n+1)+8]$	M1		
	$=\frac{1}{4}n\left[n^{3}+2n^{2}+7n+14\right]=\frac{1}{4}n(n+2)(n^{2}+7)$ (*)	A1	A1cs	50 (5)
	(c) $\sum_{15}^{25} = \sum_{1}^{25} - \sum_{1}^{14}$ with attempt to sub in answer to part (b)	M1		
	$=\frac{1}{4}(25 \times 27 \times 632) - \frac{1}{4}(14 \times 16 \times 203) = 106650 - 11368 = 95282$	A1		(2)
				[12]
	Notes (a) Correct method to identify $(k+1)^2$ as a factor award M1			
	$\frac{1}{4}(k+1)^2(k+2)^2$ award first A1			
	All three elements stated somewhere in the solution award final A1 (b) Attempt to factorise by <i>n</i> for M1			
	$\frac{1}{4}$ and $n^3 + 2n^2 + 7n + 14$ for first A1			
	(c) no working $0/2$			

Question Number	Scheme	Marks
Q9	(a) 45° or $\frac{\pi}{4}$ rotation (anticlockwise), about the origin	B1, B1 (2)
	(b) $ \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} 3\sqrt{2} \\ 4\sqrt{2} \end{pmatrix} $	M1
	p-q=6 and $p+q=8$ or equivalent	M1 A1
	p = 7 and $q = 1$ both correct	A1 (1)
	(c) Length of <i>OA</i> (= length of <i>OB</i>) = $\sqrt{7^2 + 1^2}$, = $\sqrt{50} = 5\sqrt{2}$	(4) M1, A1 (2)
	(d) $M^{2} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$	M1 A1 (2)
	(e) $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 3\sqrt{2} \\ 4\sqrt{2} \end{pmatrix}$ so coordinates are $(-4\sqrt{2}, 3\sqrt{2})$	M1 A1 (2) [12]
	Notes Order of matrix multiplication needs to be correct to award Ms (a) More than one transformation 0/2 (b) Second M1 for correct matrix multiplication to give two equations <u>Alternative</u> : (b) $\mathbf{M}^{-1} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 4\sqrt{2} \end{pmatrix} = \begin{pmatrix} 7 \\ 1 \end{pmatrix}$ First M1 A1 $\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 4\sqrt{2} \end{pmatrix} = \begin{pmatrix} 7 \\ 1 \end{pmatrix}$ Second M1 A1 (c) Correct use of their <i>p</i> and their <i>q</i> award M1 (e) Accept column vector for final A1.	

June 2010 Further Pure Mathematics FP1 6667 Mark Scheme

Question Number	Scheme	Marks
1.	(a) $(2-3i)(2-3i) = \dots$ Expand and use $i^2 = -1$, getting completely correct	M1
	expansion of 3 or 4 terms	
	Reaches $-5-12i$ after completely correct work (must see $4-9$) (*)	A1cso (2)
	(b) $ z^2 = \sqrt{(-5)^2 + (-12)^2} = 13$ or $ z^2 = \sqrt{5^2 + 12^2} = 13$	M1 A1 (2)
	Alternative methods for part (b)	
	$ z^{2} = z ^{2} = 2^{2} + (-3)^{2} = 13$ Or: $ z^{2} = zz^{*} = 13$	M1 A1 (2)
	(c) $\tan \alpha = \frac{12}{5} (\text{ allow} - \frac{12}{5})$ or $\sin \alpha = \frac{12}{13}$ or $\cos \alpha = \frac{5}{13}$	M1
	$\arg(z^2) = -(\pi - 1.176) = -1.97$ (or 4.32) allow awrt	A1 (2)
	Alternative method for part (c) $\alpha = 2 \times \arctan\left(-\frac{3}{2}\right)$ (allow $\frac{3}{2}$) or use $\frac{\pi}{2} + \arctan\frac{5}{12}$	M1
	so $\arg(z^2) = -(\pi - 1.176) = -1.97$ (or 4.32) allow awrt	A1
	(d) Both in correct quadrants. Approximate relative scale No labels needed Allow two diagrams if some indication of scale Allow points or arrows	B1 (1) 7 marks
	Notes: (a) M1: for $4 - 9 - 12i$ or $4 - 9 - 6i - 6i$ or $4 - 3^2 - 12i$ but must have correct statement seen and see i^2 replaced by -1 maybe later A1: Printed answer. Must see $4 - 9$ in working. Jump from $4 - 6i - 6i + 9i^2$ to -5-12i is M0A0 (b) Method may be implied by correct answer. NB $ z^2 = 169$ is M0 A0 (c) Allow $\arctan \frac{12}{5}$ for M1 or $\pm \frac{\pi}{2} \pm \arctan \frac{5}{12}$	

Question Number	Scheme	Marks
2.	(a) $\mathbf{M} = \begin{pmatrix} 4 & 3 \\ 6 & 2 \end{pmatrix}$ Determinant: $(8-18) = -10$	B1
	$\mathbf{M}^{-1} = \frac{1}{-10} \begin{pmatrix} 2 & -3 \\ -6 & 4 \end{pmatrix} \qquad \begin{bmatrix} = \begin{pmatrix} -0.2 & 0.3 \\ 0.6 & -0.4 \end{bmatrix} \end{bmatrix}$	M1 A1 (3)
	(b) Setting $\Delta = 0$ and using $2a^2 \pm 18 = 0$ to obtain $a = .$	M1
	$a = \pm 3$	A1 cao (2)
		5 marks
	Notes: (a) B1: must be -10 M1: for correct attempt at changing elements in major diagonal and changing signs in minor diagonal. Three or four of the numbers in the matrix should be correct – eg allow one slip A1: for any form of the correct answer, with correct determinant then isw. Special case: <i>a</i> not replaced is B0M1A0	
	(b) Two correct answers, $a = \pm 3$, with no working is M1A1 Just $a = 3$ is M1A0, and also one of these answers rejected is A0. Need 3 to be simplified (not $\sqrt{9}$).	

Question Number	Scheme	Marks
3.	(a) $f(1.4) =$ and $f(1.5) =$ Evaluate both	M1
	32 5(1.4) 0.256 (32 5(1.5) 0.709 (17 Channel friendly 1.5)	A1
	f (1.4) = -0.256 (or $-\frac{32}{125}$), f (1.5) = 0.708 (or $\frac{17}{24}$) Change of sign, \therefore root	(2)
	Alternative method:	
	Graphical method could earn M1 if 1.4 and 1.5 are both indicated	
	A1 then needs correct graph and conclusion, i.e. change of sign ∴root	
	(b) $f(1.45) = 0.221$ or 0.2 [\therefore root is in [1.4, 1.45]]	M1
	f(1.425) = -0.018 or -0.019 or -0.02	M1
	1(1.123) = 0.01001 0.019 01 0.02	
	∴root is in [1.425, 1.45]	A1cso (3)
	(c) $f'(x) = 3x^2 + 7x^{-2}$	M1 A1
	$f'(1.45) = 9.636$ (Special case: $f'(x) = 3x^2 + 7x^{-2} + 2$ then $f'(1.45) = 11.636$)	A1ft
	f(1.45) $f(1.45)$ $f(1.$	M1 A1cao
	$x_1 = 1.45 - \frac{f(1.45)}{f'(1.45)} = 1.45 - \frac{0.221}{9.636} = 1.427$	(5)
		10 marks
	indicated (One figure accuracy sufficient)(b) M1: See f(1.45) attempted and positiveM1: See f(1.425) attempted and negativeA1: is cso – any slips in numerical work are penalised here even if correct region forAnswer may be written as $1.425 \le \alpha \le 1.45$ or $1.425 < \alpha < 1.45$ or $(1.425, 1.45)$ millway round. Between is sufficient.There is no credit for linear interpolation. This is M0 M0 A0Answer with no working is also M0M0A0	
	(c) M1: for attempt at differentiation (decrease in power) A1 is cao Second A1may be implied by correct answer (do not need to see it) ft is limited to special case given. 2^{nd} M1: for attempt at Newton Raphson with their values for f(1.45) and f'(1.45). A1: is cao and needs to be correct to 3dp Newton Raphson used more than once – isw. Special case: f'(x) = $3x^2 + 7x^{-2} + 2$ then f'(1.45) = 11.636) is M1 A0 A1ft M1 A0 can also be given by implication from final answer of 1.43	0 This mark

Question Number	Scheme	Marks
4.	(a) $a = -2$, $b = 50$	B1, B1 (2)
	(b) -3 is a root	B1
	Solving 3-term quadratic $x = \frac{2 \pm \sqrt{4 - 200}}{2}$ or $(x - 1)^2 - 1 + 50 = 0$	M1
	= 1 + 7i, 1-7i	A1, A1ft (4)
	(c) $(-3) + (1+7i) + (1-7i) = -1$	B1ft (1) 7 marks
	Notes (a) Accept $x^2 - 2x + 50$ as evidence of values of <i>a</i> and <i>b</i> . (b) B1: -3 must be seen in part (b) M1: for solving quadratic following usual conventions A1: for a correct root (simplified as here) and A1ft: for conjugate of first answer. Accept correct answers with no working here. If answers are written down as factors then isw. Must see roots for marks. (c) ft requires the sum of two non-real conjugate roots and a real root resulting in a real number. Answers including <i>x</i> are B0	

Question	Scheme	Marks	
Number 5.	(a) $y^2 = (10t)^2 = 100t^2$ and $20x = 20 \times 5t^2 = 100t^2$	B1 ((1)
	Alternative method: Compare with $y^2 = 4ax$ and identify $a = 5$ to give answer.	B1 ((1)
	(b) Point A is (80, 40) (stated or seen on diagram). May be given in part (a) Focus is $(5, 0)$ (stated or seen on diagram) or $(a, 0)$ with $a = 5$ May be given in part (a).	B1 B1	
	Gradient: $\frac{40-0}{80-5} = \frac{40}{75} \left(=\frac{8}{15}\right)$	M1 A1 (5 mar	(4) ks
	Notes:		
	(a) Allow substitution of x to obtain $y = \pm 10t$ (or just 10t) or of y to obtain x		
	(b) M1: requires use of gradient formula correctly, for their values of x and y .		
	This mark may be implied by correct answer.		
	Differentiation is M0 A0		
	A1: Accept 0.533 or awrt		

Question Number	Scheme	Marks
6.	$(a) \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix}$	B1 (1
	$(b) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	B1 (1
	(c) $\mathbf{T} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ 0 & -8 \end{pmatrix}$	M1 A1 (2
	(d) $\mathbf{AB} = \begin{pmatrix} 6 & 1 \\ 4 & 2 \end{pmatrix} \begin{pmatrix} k & 1 \\ c & -6 \end{pmatrix} = \begin{pmatrix} 6k+c & 0 \\ 4k+2c & -8 \end{pmatrix}$	M1 A1 A1 (3)
	(e) " $6k + c = 8$ " and " $4k + 2c = 0$ " Form equations and solve simultaneously	M1
	k=2 and $c=-4$	A1 (2
		(2) 9 marks
	Alternative method for (e) M1: AB = T \Rightarrow B = A ⁻¹ T = and compare elements to find <i>k</i> and <i>c</i> . Then A1 as before.	

(c) M1: Accept multiplication of their matrices either way round (this can be implied by correct answer)

A1: cao

(d) M1: Correct matrix multiplication method implied by one or two correct terms in correct positions.

A1: for three correct terms in correct positions

2nd A1: for all four terms correct and simplified

(e) M1: follows their previous work but must give two equations from which k and ccan be found and there must be attempt at solution getting to k = or c =.

A1: is cao (but not cso - may follow error in position of 4k + 2c earlier).

(1)

(1)

(2)

(3)

Question	Scheme		Marks
Number 7.	(a) LHS = $f(k+1) = 2^{k+1} + 6^{k+1}$	$OR RHS = (c_k^k) + c_k^k + c_k^k + c_k^k)$	M1
	$= 2(2^k) + 6(6^k)$	$= 6f(k) - 4(2^{k}) = 6(2^{k} + 6^{k}) - 4(2^{k})$ $= 2(2^{k}) + 6(6^{k})$	A1
	$= 6(2^{k} + 6^{k}) - 4(2^{k}) = 6f(k) - 4(2^{k})$	$= 2^{k+1} + 6^{k+1} = f(k+1) $ (*)	A1 (3)
	OR $f(k+1) - 6f(k) = 2^{k+1} + 6^{k+1} - 6(2^k + 6^k)$)	M1
	$=(2-6)(2^k)=-4.2^k$, and so f(k+1)	$= 6f(k) - 4(2^k)$	A1, A1 (3)
	(b) $n = 1$: f(1) = $2^1 + 6^1 = 8$, which is divis	ihle hv 8	B1
	Either Assume $f(k)$ divisible by 8 and try to use $f(k + 1) = 6f(k) - 4(2^k)$	Or Assume $f(k)$ divisible by 8 and try to use $f(k + 1) - f(k)$ or $f(k + 1) + f(k)$ including factorising $6^k = 2^k 3^k$	M1
	Show $4(2^{k}) = 4 \times 2(2^{k-1}) = 8(2^{k-1})$ or $8(\frac{1}{2}2^{k})$	$=2^{3}2^{k-3}(1+5.3^{k})$ or	A1
	Or valid statement	$=2^{3}2^{k-3}(3+7.3^{k})$ o.e.	
	Deduction that result is implied for	Deduction that result is implied for	A1cso
	n = k + 1 and so is true for positive integers by induction (may include $n = 1$ true here)	n = k + 1 and so is true for positive integers by induction (must include explanation of why $n = 2$ is also true here)	(4) 7 marks
	equation and reach the other or show that each i (b) B1: for substitution of $n = 1$ and stating "t appear in the concluding statement of the p M1: Assume $f(k)$ divisible by 8 and consider f(lead to proof – not merely $f(k+1) - f(k)$ unless A1: Indicates each term divisible by 8 OR take A1: Induction statement . Statement $n = 1$ here NB: $f(k+1) - f(k) = 2^{k+1} - 2^k + 6^{k+1} - 6^k =$ (b) " Otherwise" methods Could use: $f(k+1) = 2f(k) + 4(6^k)$ or $f(k + 1)$ similar way to given expression and Left h	s cao nbiguity (needs (for example) to start with one s side separately is $2(2^k) + 6(6^k)$ and conclude rue for $n = 1$ " or "divisible by 8" or tick. (This s proof) $(k + 1) = 6f(k) - 4(2^k)$ or equivalent expression deduce that 2 is a factor of 6 (see right hand sch es out factor 8 or 2^3 could contribute to B1 mark earlier. $(2^k + 5.6^k$ only is M0 A0 A0 $(2^k + 2) = 36f(k) - 32(6^k)$ or $f(k + 2) = 4f(k) + 3$	LHS = RHS) tatement may that could neme above). $32(2^k)$ in a

РM	Т
1 171	'

Question Number		Scheme		Marks
8.	(a) $\frac{c}{3}$		B1 (1)	
	(b) $y = \frac{c^2}{x} \Longrightarrow \frac{dy}{dx} = -c^2 x^{-2}$,			B1
	or $y + x \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -\frac{y}{x}$ or $\dot{x} = c$, $\dot{y} = -\frac{c}{t^2}$ so $\frac{dy}{dx} = -\frac{1}{t^2}$ and at $A \frac{dy}{dx} = -\frac{c^2}{(3c)^2} = -\frac{1}{9}$ so gradient of normal is 9 Either $y - \frac{c}{3} = 9(x - 3c)$ or $y = 9x + k$ and use $x = 3c$, $y = \frac{c}{3}$			
	$\Rightarrow 3y = 27x - 80c \tag{*}$			A1 (5)
	(c) $\frac{c^2}{x} = \frac{27x - 80c}{3}$	$\frac{c^2}{y} = \frac{3y + 80c}{27}$	$3\frac{c}{t} = 27ct - 80c$	M1
	$3c^2 = 27x^2 - 80cx$	$27c^2 = 3y^2 + 80cy$	$3c = 27ct^2 - 80ct$	A1
		(y+27c)(3y-c) = 0 so $y =$		M1
	$x = -\frac{c}{27}$, $y = -27c$	$x = -\frac{c}{27}$, $y = -27c$		A1, A1
			$x = -\frac{c}{27} , y = -27c$	(5) 11 marks
	Notes		dv	
	(b) B1: Any valid method of	of differentiation but must get	to correct expression for $\frac{dy}{dx}$	
	M1 : Substitutes values and uses negative reciprocal (needs to follow calculus) A1: 9 cao (needs to follow calculus) M1: Finds equation of line through A with any gradient (other than 0 and ∞) A1: Correct work throughout – obtaining printed answer.			
	M1: Attempts to solve three	one variable (x, y or t) e term quadratic (any equivale e term quadratic to obtain $x =$ ordinate. (cao but allow recove	or $y = $ or $t =$	

stion nber	Scheme	Marks
9.	(a) If $n = 1$, $\sum_{r=1}^{n} r^2 = 1$ and $\frac{1}{6}n(n+1)(2n+1) = \frac{1}{6} \times 1 \times 2 \times 3 = 1$, so true for $n = 1$.	B1
	Assume result true for $n = k$	M1
	$\sum_{r=1}^{k+1} r^2 = \frac{1}{6}k(k+1)(2k+1) + (k+1)^2$	M1
	$=\frac{1}{6}(k+1)(2k^2+7k+6) \text{ or } =\frac{1}{6}(k+2)(2k^2+5k+3) \text{ or } =\frac{1}{6}(2k+3)(k^2+3k+2)$	A1
	$=\frac{1}{6}(k+1)(k+2)(2k+3) = \frac{1}{6}(k+1)(\{k+1\}+1)(2\{k+1\}+1) \text{ or equivalent}$	dM1
	True for $n = k + 1$ if true for $n = k$, (and true for $n = 1$) so true by induction for all n .	A1cso
	Alternative for (a) After first three marks B M M1 as earlier : May state RHS = $\frac{1}{6}(k+1)(\{k+1\}+1)(2\{k+1\}+1) = \frac{1}{6}(k+1)(k+2)(2k+3)$ for third M1	B1M1M1 dM1
	Expands to $\frac{1}{6}(k+1)(2k^2+7k+6)$ and show equal to $\sum_{r=1}^{k+1}r^2 = \frac{1}{6}k(k+1)(2k+1) + (k+1)^2$ for A1 So true for $n = k + 1$ if true for $n = k$, and true for $n = 1$, so true by induction for all n .	A1 A1cso
	(b) $\sum_{r=1}^{n} (r^2 + 5r + 6) = \sum_{r=1}^{n} r^2 + 5 \sum_{r=1}^{n} r + (\sum_{r=1}^{n} 6)$	M1
	$\frac{1}{6}n(n+1)(2n+1) + \frac{5}{2}n(n+1), + 6n$	A1, B1
	$=\frac{1}{6}n[(n+1)(2n+1)+15(n+1)+36]$	M1
	$=\frac{1}{6}n[2n^{2}+18n+52]=\frac{1}{3}n(n^{2}+9n+26) \text{or } a=9, \ b=26$	A1 (5
	(c) $\sum_{r=n+1}^{2n} (r+2)(r+3) = \frac{1}{3} 2n(4n^2 + 18n + 26) - \frac{1}{3}n(n^2 + 9n + 26)$	M1 A1ft
	$\frac{1}{3}n(8n^2 + 36n + 52 - n^2 - 9n - 26) = \frac{1}{3}n(7n^2 + 27n + 26) $ (*)	A1cso (3 14 mark
	Notes: (a) B1: Checks $n = 1$ on both sides and states true for $n = 1$ here or in conclusion M1: Assumes true for $n = k$ (should use one of these two words) M1: Adds $(k+1)$ th term to sum of k terms A1: Correct work to support proof M1: Deduces $\frac{1}{6}n(n+1)(2n+1)$ with $n = k + 1$	

A1: Makes induction statement. Statement true for n = 1 here could contribute to B1 mark earlier

Mark Scheme (Results) January 2011

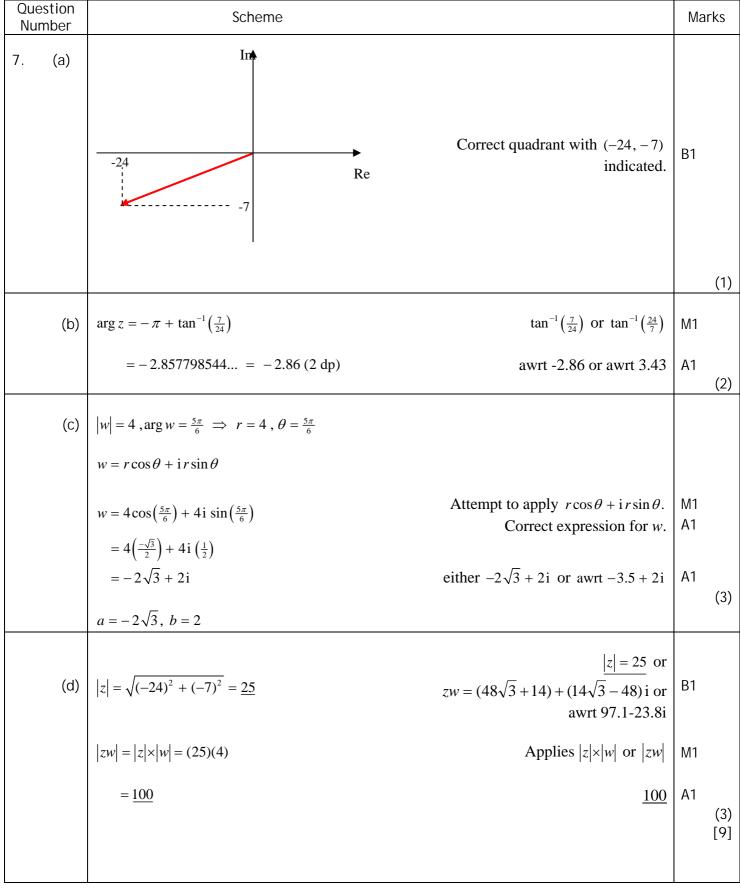
GCE Further Pure Mathematics FP1 (6667) Paper 1

January 2011 Further Pure Mathematics FP1 6667 Mark Scheme

Question Number	Scheme		Ма	rks
1. (a)	z = 5 - 3i, w = 2 + 2i $z^{2} = (5 - 3i)(5 - 3i)$			
	$= 25 - 15i - 15i + 9i^{2}$ $= 25 - 15i - 15i - 9$ An attempt to multiply out brackets to give four terms (or f terms implied zw is 2)	our ed).	M1	
	= 16 - 30i 16 - 3 Answer only	-	A1	(2)
(b)				
	$= \frac{(5-3i)}{(2+2i)} \times \frac{(2-2i)}{(2-2i)}$ Multiplies $\frac{z}{w}$ by $\frac{(2-2i)}{(2-2i)}$	$\frac{2i}{2i}$	M1	
	$= \frac{10-10i-6i-6}{4+4}$ Simplifies realising that a mumber is needed on denominator and applies $i^2 = -1$ their numerator expression a denominator expression	the on	M1	
	$=\frac{4-16i}{8}$			
	$= \frac{1}{2} - 2i \text{or } a = \frac{1}{2} \text{ and } b = -2$ equival Answer as a single fraction	ent	A1	(3) [5]

Question Number	Scheme	Ма	rks
2. (a)	$\mathbf{A} = \begin{pmatrix} 2 & 0 \\ 5 & 3 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} -3 & -1 \\ 5 & 2 \end{pmatrix}$		
	$\mathbf{AB} = \begin{pmatrix} 2 & 0 \\ 5 & 3 \end{pmatrix} \begin{pmatrix} -3 & -1 \\ 5 & 2 \end{pmatrix}$		
	$= \begin{pmatrix} 2(-3) + 0(5) & 2(-1) + 0(2) \\ 5(-3) + 3(5) & 5(-1) + 3(2) \end{pmatrix}$ A correct method to multiply out two matrices. Can be implied by two out of four correct elements.	M1	
	$= \begin{pmatrix} -6 & -2 \\ 0 & 1 \end{pmatrix}$ Any three elements correct Correct answer	A1	
		A1	(-)
	Correct answer only 3/3		(3)
(b)	Reflection; about the y-axis.Reflection $\underline{y-axis}$ (or $x = 0.$)		(2)
(c)	$\mathbf{C}^{100} = \mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad$	B1	
			(1) [6]

Question Number	Scheme		Marks
3. (a)	$f(x) = 5x^{2} - 4x^{\frac{3}{2}} - 6, x \ge 0$ f(1.6) = -1.29543081 f(1.8) = 0.5401863372	awrt -1.30 awrt 0.54	B1 B1
	$\frac{\alpha - 1.6}{"1.29543081"} = \frac{1.8 - \alpha}{"0.5401863372"}$ $\alpha = 1.6 + \left(\frac{"1.29543081"}{"0.5401863372" + "1.29543081"}\right) 0.2$	Correct linear interpolation method with signs correct. Can be implied by working below.	M1
	= 1.741143899	awrt 1.741 Correct answer seen 4/4	A1 (4)
(b)	$f'(x) = 10x - 6x^{\frac{1}{2}}$	At least one of $\pm a x$ or $\pm b x^{\frac{1}{2}}$ correct. Correct differentiation.	M1 A1 (2)
(C)	f (1.7) = -0.4161152711	f(1.7) = awrt - 0.42	B1
	f'(1.7) = 9.176957114	f'(1.7) = awrt 9.18	B1
	$\alpha_2 = 1.7 - \left(\frac{"-0.4161152711"}{"9.176957114"}\right)$	Correct application of Newton- Raphson formula using their values.	M1
	= 1.745343491		
	= 1.745 (3dp)	1.745 Correct answer seen 4/4	A1 cao (4) [10]


Question Number	Scheme	Ма	irks
4. (a)	$z^{2} + p z + q = 0, z_{1} = 2 - 4i$ $z_{2} = 2 + 4i$ $2 + 4i$	B1	(1)
(b)	$(z - 2 + 4i)(z - 2 - 4i) = 0$ $\Rightarrow z^{2} - 2z - 4iz - 2z + 4 - 8i + 4iz - 8i + 16 = 0$ $\Rightarrow z^{2} - 4z + 20 = 0$ An attempt to multiply out brackets of two complex factors and no i ² . Any one of $p = -4$, $q = 20$. Both $p = -4$, $q = 20$. $\Rightarrow z^{2} - 4z + 20 = 0$ only 3/3	M1 A1 A1	(3) [4]

Question	Scheme		Mark	be .
Number			Warn	<u>(</u>)
5	$\sum_{n=1}^{n} r(r+1)(r+5)$			
(a)	$\sum_{r=1}^{n} r(r+1)(r+5)$ = $\sum_{r=1}^{n} r^{3} + 6r^{2} + 5r$ = $\frac{1}{4}n^{2}(n+1)^{2} + 6 \cdot \frac{1}{6}n(n+1)(2n+1) + 5 \cdot \frac{1}{2}n(n+1)$	Multiplying out brackets and an attempt to use at least one of the standard formulae correctly.	M1	
	$= \frac{-n(n+1)}{4} + 0n(n+1)(2n+1) + 0n(n+1)$	Correct expression.	A1	
	$=\frac{1}{4}n^2(n+1)^2 + n(n+1)(2n+1) + \frac{5}{2}n(n+1)$			
	$= \frac{1}{4}n(n+1)(n(n+1) + 4(2n+1) + 10)$	Factorising out at least $n(n + 1)$	dM1	
	$= \frac{1}{4}n(n+1)\left(n^2 + n + 8n + 4 + 10\right)$			
	$= \frac{1}{4}n(n+1)\left(n^2 + 9n + 14\right)$	Correct 3 term quadratic factor	A1	
	$= \frac{1}{4}n(n+1)(n+2)(n+7) *$	Correct proof. No errors seen.	A1	(5)
(b)	$S_n = \sum_{r=20}^{50} r(r+1)(r+5)$			
	$=S_{50} - S_{19}$			
	$= \frac{1}{4}(50)(51)(52)(57) - \frac{1}{4}(19)(20)(21)(26)$	Use of $S_{50} - S_{19}$	M1	
	= 1889550 - 51870			Ì
	= 1837680	1837680	A1	
		Correct answer only 2/2		(2) [7]
	·			

2

Question Number	Scheme	Marks
6.	$C: y^2 = 36x \implies a = \frac{36}{4} = 9$	
(a)	S(9,0) (9,0)	B1 (1)
(b)	x + 9 = 0 or $x = -9or ft using their a from part (a).$	B1√ (1)
	Either 25 by itself or $PQ = 25$.	D1
(C)	$PS = 25 \Rightarrow \underline{QP = 25}$ Do not award if just $PS = 25$ is seen.	B1
		(1)
(d)	<i>x</i> -coordinate of $P \Rightarrow x = 25 - 9 = 16$ $x = 16$	В1 √
	$y^2 = 36(16)$ Substitutes their <i>x</i> -coordinate into equation of <i>C</i> .	M1
	$\underline{y} = \sqrt{576} = \underline{24}$	A1
	Therefore $P(16, 24)$	(3)
(e)	Area $OSPQ = \frac{1}{2}(9+25)24$ $\frac{1}{2}(\text{their } a+25)(\text{their } y)$	M1
	or rectangle and 2 distinct triangles, correct for their values.	
	$= \underline{408} \ (\text{units})^2 $	A1 (2) [8]

Question Number	Scheme	Marks
8. (a)	$\mathbf{A} = \begin{pmatrix} 2 & -2 \\ -1 & 3 \end{pmatrix}$ det $\mathbf{A} = 2(3) - (-1)(-2) = 6 - 2 = 4$	<u>B1</u> (1)
(b)	$\mathbf{A}^{-1} = \frac{1}{4} \begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix} \qquad \qquad$	M1 A1 (2)
(c)	Area $(R) = \frac{72}{4} = \underline{18} \text{ (units)}^2$ $\frac{72}{\text{their det } \mathbf{A}} \text{ or } 72 \text{ (their det } \mathbf{A}\text{)}$ $\underline{18} \text{ or ft answer.}$	
(d)	$\mathbf{AR} = \mathbf{S} \implies \mathbf{A}^{-1} \mathbf{AR} = \mathbf{A}^{-1} \mathbf{S} \implies \mathbf{R} = \mathbf{A}^{-1} \mathbf{S}$ $\mathbf{R} = \frac{1}{4} \begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 0 & 8 & 12 \\ 4 & 16 & 4 \end{pmatrix}$ $\mathbf{At least one attempt to apply \mathbf{A}^{-1} by any of the three vertices in \mathbf{S}.$ $= \frac{1}{4} \begin{pmatrix} 8 & 56 & 44 \\ 8 & 40 & 20 \end{pmatrix}$	M1
	$= \begin{pmatrix} 2 & 14 & 11 \\ 2 & 10 & 5 \end{pmatrix}$ At least one correct column o.e. At least two correct columns o.e.	A1√ A1
	Vertices are (2, 2), (14, 10) and (11, 5). All three coordinates correct.	A1 (4) [9]

edexcel

	r		
Question Number	Scheme		Marks
9.	$u_{n+1} = 4u_n + 2$, $u_1 = 2$ and $u_n = \frac{2}{3}(4^n - 1)$ $n = 1$; $u_1 = \frac{2}{3}(4^1 - 1) = \frac{2}{3}(3) = 2$ So u_n is true when $n = 1$.	Check that $u_n = \frac{2}{3}(4^n - 1)$ yields $\overline{2}$ when $n = 1$.	B1
	Assume that for $n = k$ that, $u_k = \frac{2}{3}(4^k - 1)$ is true for $k \in \mathbb{Z}^+$.	yields 2 when $\frac{n-1}{2}$	
	Then $u_{k+1} = 4u_k + 2$		
	$=4\left(\frac{2}{3}(4^{k}-1)\right)+2$	Substituting $u_k = \frac{2}{3}(4^k - 1)$ into $u_{n+1} = 4u_n + 2.$	M1
	$=\frac{8}{3}(4)^{k}-\frac{8}{3}+2$	An attempt to multiply out the brackets by 4 or $\frac{8}{3}$	M1
	$=\frac{2}{3}(4)(4)^{k}-\frac{2}{3}$		
	$=\frac{2}{3}4^{k+1}-\frac{2}{3}$		
	$= \frac{2}{3} (4^{k+1} - 1)$	$\frac{2}{3}(4^{k+1}-1)$	A1
	Therefore, the general statement, $u_n = \frac{2}{3}(4^n - 1)$ is true when $n = k+1$. (As u_n is true for $n = 1$,) then u_n is true for all positive integers by mathematical induction	Require 'True when n=1', 'Assume true when $n=k$ ' and 'True when n = k+1' then true for all <i>n</i> o.e.	A1
			(5) [5]

Question	Cohome	Marilia
Number	Scheme	Marks
10. (a)	$xy = 36 \text{ at } (6t, \frac{6}{t}).$ $y = \frac{36}{x} = 36x^{-1} \Rightarrow \frac{dy}{dx} = -36x^{-2} = -\frac{36}{x^2}$ An attempt at $\frac{dy}{dx}.$ or $\frac{dy}{dt}$ and $\frac{dx}{dt}$	M1
	At $(6t, \frac{6}{t}), \frac{dy}{dx} = -\frac{36}{(6t)^2}$ An attempt at $\frac{dy}{dx}$. in terms of t	M1
	So, $m_T = \frac{dy}{dx} = -\frac{1}{t^2}$ Must see working to award here	A1
	T: $y - \frac{6}{t} = -\frac{1}{t^2}(x - 6t)$ Applies $y - \frac{6}{t} = \text{their } m_T(x - 6t)$	M1
	T : $y - \frac{6}{t} = -\frac{1}{t^2}x + \frac{6}{t}$ T : $y = -\frac{1}{t^2}x + \frac{6}{t} + \frac{6}{t}$	
	T : $y = -\frac{1}{t^2}x + \frac{12}{t}*$ Correct solution.	A1 cso (5)
(b)	Both T meet at $(-9, 12)$ gives	(0)
	$12 = -\frac{1}{t^{2}}(-9) + \frac{12}{t}$ Substituting (-9,12) into T . $12 = \frac{9}{t^{2}} + \frac{12}{t} (\times t^{2})$	M1
	$t^{2} - t - (t - t)^{2}$ $12t^{2} = 9 + 12t$ $12t^{2} - 12t - 9 = 0$ $quadratic''$ $4t^{2} - 4t - 3 = 0$ An attempt to form a "3 term quadratic"	M1
	(2t-3)(2t+1) = 0 An attempt to factorise.	M1
	$t = \frac{3}{2}, -\frac{1}{2}$ $t = \frac{3}{2}, -\frac{1}{2}$	A1
	$t = \frac{3}{2} \Rightarrow x = 6\left(\frac{3}{2}\right) = 9$, $y = \frac{6}{\left(\frac{3}{2}\right)} = 4 \Rightarrow (9, 4)$ An attempt to substitute either their $t = \frac{3}{2}$ or their $t = -\frac{1}{2}$ into x and y.	M1
	At least one of $(9, 4)$ or $(-3, -12)$.	A1
	$y = \frac{6}{\left(-\frac{1}{2}\right)} = -12 \implies (-3, -12)$ Both (9, 4) and (-3, -12).	A1
		(7) [12]

Other Possible Solutions

Question Number	Scheme	Marks
4.	$z^2 + pz + q = 0, \ z_1 = 2 - 4i$	
(a) (i) Aliter	$z_2 = 2 + 4i$ 2 + 4i	B1
(ii) Way 2	Product of roots = $(2 - 4i)(2 + 4i)$ No i^2 . Attempt Sum and Product of roots or Sum and discriminant	M1
	= 4 + 16 = 20	
	or $b^2 - 4ac = (8i)^2$	
	Sum of roots $= (2 - 4i) + (2 + 4i) = 4$	
	Any one of $p = -4$, $q = 20$.	A1
	$z^{2} - 4z + 20 = 0$ Both $p = -4, q = 20$.	A1
		(4)
4.	$z^2 + p z + q = 0, \ z_1 = 2 - 4i$	
(a) (i) Aliter	$z_2 = 2 + 4i$ 2 + 4i	B1
(ii)	An attempt to substitute either	
Way 3	$(2-4i)^2 + p(2-4i) + q = 0$ $z_1 \text{ or } z_2 \text{ into } z^2 + pz + q = 0$	M1
	$-12 - 16\mathbf{i} + p(2 - 4\mathbf{i}) + q = 0$ and no \mathbf{i}^2 .	
	Imaginary part: $-16 - 4p = 0$	
	Real part: $-12 + 2p + q = 0$	
	$4p = -16 \Rightarrow p = -4$ Any one of $p = -4$, $q = 20$.	A1
	$q = 12 - 2p \implies q = 12 - 2(-4) = 20$ Both $p = -4, q = 20$.	A1
		(4)

Question Number	Scheme		Marks
Aliter 7. (c) Way 2	$ w = 4$, $\arg w = \frac{5\pi}{6}$ and $w = a + ib$		
-	$ w = 4 \implies a^2 + b^2 = 16$	Attempts to write down an equation in terms of a and b for either the modulus or the argument of w .	M1
	$\arg w = \frac{5\pi}{6} \implies \arctan\left(\frac{b}{a}\right) = \frac{5\pi}{6} \implies \frac{b}{a} = -\frac{1}{\sqrt{3}}$	Either $a^2 + b^2 = 16$ or $\frac{b}{a} = -\frac{1}{\sqrt{3}}$	A1
	$a = -\sqrt{3} b \implies a^2 = 3b^2$ So, $3b^2 + b^2 = 16 \implies b^2 = 4$		
	So, $3b^2 + b^2 = 16 \implies b^2 = 4$		
	$\Rightarrow b = \pm 2$ and $a = \mp 2\sqrt{3}$		
	As <i>w</i> is in the second quadrant		
	$w = -2\sqrt{3} + 2i$	either $-2\sqrt{3} + 2i$ or awrt $-3.5 + 2i$	A1 (3)
	$a = -2\sqrt{3}, b = 2$		(3)

Mark Scheme (Results)

June 2011

GCE Further Pure FP1 (6667) Paper 1

June 2011 6667 Further Pure Mathematics FP1 Mark Scheme

Question Number	Scheme	Notes	Mar	ks
1.	$\mathbf{f}(x) = 3^x + 3x - 7$			
(a)	f(1) = -1 f(2) = 8	Either any one of $f(1) = -1$ or $f(2) = 8$.	M1	
	Sign change (positive, negative) (and $f(x)$ is continuous) therefore (a root) α is between $x = 1$ and $x = 2$.	Both values correct, sign change and conclusion	A1	
				(2)
(b)	$f(1.5) = 2.696152423 \{\Rightarrow 1,, \alpha,, 1.5\}$	f(1.5) = awrt 2.7 (or truncated to 2.6)	B1	
		Attempt to find $f(1.25)$.	M1	
	f(1.25) = 0.698222038 $\Rightarrow 1,, \alpha,, 1.25$	f(1.25) = awrt 0.7 with 1,, α ,, 1.25 or 1 < α < 1.25 or [1, 1.25] or (1, 1.25). or equivalent in words.	A1	
	In (b) there is no credit for lin correct answer with no wor	near interpolation and a		(3)
		0		5

Question Number	S	cheme	Notes	Marks
2. (a)	$ z_1 = \sqrt{(-2)^2 + 1^2} = \sqrt{5}$	= 2.236	$\sqrt{5}$ or awrt 2.24	B1 (1)
(b)	$\arg z = \pi - \tan^{-1}\left(\frac{1}{2}\right)$		$\tan^{-1}\left(\frac{1}{2}\right) \text{ or } \tan^{-1}\left(\frac{2}{1}\right) \text{ or } \cos^{-1}\left(\frac{2}{\sqrt{5}}\right) \text{ or } \sin^{-1}\left(\frac{2}{\sqrt{5}}\right) \text{ or } \sin^{-1}\left(\frac{1}{\sqrt{5}}\right) \text{ or } \cos^{-1}\left(\frac{1}{\sqrt{5}}\right)$	M1
	= 2.677945045		awrt 2.68	A1 oe
	Can wor		mark (arg $z = 153.4349488^{\circ}$)	(2)
		$\arg z = \tan^{-1}\left(\frac{1}{-2}\right) = -0.46$	on its own is M0	
		but $\pi + \tan^{-1}(\frac{1}{-2}) = 2.68 \text{ sc}$	ores M1A1	
		π - tan ⁻¹ $\left(\frac{1}{-2}\right)$ = is M0 as is	$\pi - \tan(\frac{1}{2})$ (2.60)	
(c)	$z^2 - 10z + 28 = 0$	(-2)		
	$z = \frac{10 \pm \sqrt{100 - 4(1)(28)}}{2(1)}$	3)	An attempt to use the quadratic formula (usual rules)	M1
	$=\frac{10\pm\sqrt{100-112}}{2}$			-
	$=\frac{10\pm\sqrt{-12}}{2}$			
	$=\frac{10\pm 2\sqrt{3}i}{2}$		Attempt to simplify their $\sqrt{-12}$ in terms	
	$=\frac{1}{2}$		of i. E.g. i $\sqrt{12}$ or i $\sqrt{3 \times 4}$	M1
	 If t	heir b ² -4ac >0 then only th	· · ·	
	So, $z = 5 \pm \sqrt{3}i$.	${p = 5, q = 3}$	$5 \pm \sqrt{3}i$	A1 oe
	Со	rrect answers with no wor		(3)
(d)				
	У Т	•	Note that the points are $(-2, 1)$,	
		-	$(5,\sqrt{3})$ and $(5,-\sqrt{3})$.	
	•		The point $(-2, 1)$ plotted correctly on the Argand diagram with/without label.	B1
		л	The distinct points z_2 and z_3 plotted	1
		٠	correctly and symmetrically about the <i>x</i> -axis on the Argand diagram with/without label.	B1√
			o each other. If you are in doubt about ur team leader or use review.	(2)
			ving obtained complex numbers in (c)	
				8

Question Number	Scheme	Notes	Ма	irks
	(1 Ö 2)			
3. (a)	$\mathbf{A} = \begin{pmatrix} 1 & \ddot{\mathbf{O}} \ 2 \\ \ddot{\mathbf{O}} \ 2 & -1 \end{pmatrix}$		-	
(i)	$\mathbf{A}^{2} = \begin{pmatrix} 1 & \ddot{\mathbf{O}} \ 2 \\ \ddot{\mathbf{O}} \ 2 & -1 \end{pmatrix} \begin{pmatrix} 1 & \ddot{\mathbf{O}} \ 2 \\ \ddot{\mathbf{O}} \ 2 & -1 \end{pmatrix}$			
	$= \begin{pmatrix} 1+2 & \ddot{O} 2 - \ddot{O} 2 \\ \ddot{O} 2 - \ddot{O} 2 & 2+1 \end{pmatrix}$	A correct method to multiply out two matrices. Can be implied by two out of four correct elements.	M1	
	$= \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$	Correct answer	A1	
			-	(2)
		Enlargement;	B1;	
(ii)	Enlargement ; scale factor 3, centre $(0, 0)$.	scale factor 3 , centre (0 , 0)	B1	
	Allow 'from' or 'about' for centre an	d 'O' or 'origin' for (0, 0)		
			-	(2)
(b)	$\mathbf{B} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$			
	Reflection; in the line $y = -x$.	Reflection ; y = -x	B1; B1	
	Allow 'in the axis' 'about the The question does not specify a <u>single</u> transform combinations that are correct e.g. Anticlockwise re by a reflection in the <i>x</i> -axis is acceptable. In case <u>completely</u> correct and scored as B2 (no part m Leader.	ation so we would need to accept any otation of 90° about the origin followed s like these, the combination has to be		(2)
(c)	$\mathbf{C} = \begin{pmatrix} k+1 & 12 \\ k & 9 \end{pmatrix}, \ k \text{ is a constant.}$			
	C is singular \Rightarrow det C = 0. (Can be implied)	$\det \mathbf{C} = 0$	B1	
	Special Case $\frac{1}{9(k+1)-12k} = 0$	B1(implied)M0A0		
	9(k+1) - 12k (= 0)	Applies $9(k+1) - 12k$	M1	
	9k+9=12k			
	9 = 3k			
	k = 3	<i>k</i> = 3	A1	
	k = 3 with no working can s			(3)
	<u>~</u>			. /
				9

Question Number	Scheme	Notes	Marks
4.	$f(x) = x^{2} + \frac{5}{2x} - 3x - 1, x \neq 0$		
(a)	$f(x) = x^{2} + \frac{5}{2}x^{-1} - 3x - 1$		
	$f'(x) = 2x - \frac{5}{2}x^{-2} - 3\{+0\}$	At least two of the four terms differentiated correctly. Correct differentiation. (Allow any correct unsimplified form)	M1 A1
	$\left\{ f'(x) = 2x - \frac{5}{2x^2} - 3 \right\}$		(2)
(b)	$f(0.8) = 0.8^{2} + \frac{5}{2(0.8)} - 3(0.8) - 1(=0.365) \left(=\frac{73}{200}\right)$	A correct numerical expression for f(0.8)	B1
	$f'(0.8) = -5.30625 \left(= \frac{-849}{160} \right)$	Attempt to insert $x = 0.8$ into their f'(x). Does not require an evaluation. (If f'(0.8) is incorrect for their derivative and there is no working score M0)	M1
	$\alpha_2 = 0.8 - \left(\frac{"0.365"}{"-5.30625"}\right)$	Correct application of Newton-Raphson using their values. Does not require an evaluation.	M1
	= 0868786808		
	= 0.869 (3 dp)	0.869	A1 cao
	A correct answer only with no working sco Ignore any further appl		(4)
	A derivative of $2x - 5(2x)^{-2} - 3$ is quite common		
	answer of 0.909. This would normally score M1A0B1M1M1A0 (4/6)		
	Similarly for a derivative of $2x - 10x^{-2} - 3$ where the corresponding values are		
	f'(0.8) = -17.025 and a	nswer 0.821	
			6

Question Number	Scheme	Notes	Marks
5.	$\mathbf{A} = \begin{pmatrix} -4 & a \\ b & -2 \end{pmatrix}, \text{ where } a \text{ and } b \text{ are constants.}$		
(a)	$\mathbf{A} \begin{pmatrix} 4 \\ 6 \end{pmatrix} = \begin{pmatrix} 2 \\ -8 \end{pmatrix}$		
	Therefore, $\begin{pmatrix} -4 & a \\ b & -2 \end{pmatrix} \begin{pmatrix} 4 \\ 6 \end{pmatrix} = \begin{pmatrix} 2 \\ -8 \end{pmatrix}$	Using the information in the question to form the matrix equation. Can be implied by both correct equations below.	M1
	Do not allow this mark for other incorrect staten e.g. $\binom{4}{6}\binom{-4}{b} = \binom{2}{-8}$ would be M0 unless following the mark for the mark	· ·	
l	So, $-16 + 6a = 2$ and $4b - 12 = -8$	Any one correct equation.	M1
	Allow $\begin{pmatrix} -16+6a\\4b-12 \end{pmatrix} = \begin{pmatrix} 2\\-8 \end{pmatrix}$	Any correct horizontal line	
	giving $a = 3$ and $b = 1$.	Any one of $a = 3$ or $b = 1$. Both $a = 3$ and $b = 1$.	A1 A1
			(4)
(b)	det $\mathbf{A} = 8 - (3)(1) = 5$	Finds determinant by applying $8 - \text{their } ab$. det $\mathbf{A} = 5$	M1 A1
	Special case: The equations -16 + 6b = 2 and 4 from incorrect matrix multiplication. This wi in (b).		
	Note that $\det \mathbf{A} = \frac{1}{8-ab}$ scores M0 here but the formula of the score of the	he following 2 marks are available. However,	
	beware det $\mathbf{A} = \frac{1}{8-ab} = \frac{1}{5} \Rightarrow area S = \frac{30}{\frac{1}{5}} = 150$		
	This scores M0A0 M1A0 Area $S = (\det \mathbf{A})(\operatorname{Area} R)$		
	Area $S = 5 \times 30 = 150 \text{ (units)}^2$	$\frac{30}{\text{their det }\mathbf{A}}$ or $30 \times (\text{their det }\mathbf{A})$	M1
		150 or ft answer	A1 √
	If their det A < 0 then allow ft provided final answer > 0In (b) Candidates may take a more laborious route for the area scale factor and find the area of the unit square, for example, after the transformation represented by A. This needs to be a complete method to score any marks. Correctly establishing the area scale factor M1. Correct answer 5 A1. Then mark as original scheme.		(4)
			8

edexcel

Question Number	Scheme	Notes	Marks
6.	$z + 3iz^* = -1 + 13i$		
	(x+iy)+3i(x-iy)	$\frac{z^* = x - i y}{\text{Substituting } z = x + i y \text{ and their } z^*}$ into $z + 3i z^*$	B1 M1
	x + i y + 3i x + 3 y = -1 + 13i	Correct equation in x and y with $i^2 = -1$. Can be implied.	A1
	(x+3y) + i(y+3x) = -1 + 13i		
	Re part : $x + 3y = -1$ Im part : $y + 3x = 13$	An attempt to equate real and imaginary parts. Correct equations.	M1
	3x + 9y = -3 $3x + y = 13$		
	$8y = -16 \implies y = -2$	Attempt to solve simultaneous equations to find one of x or y. At least one of the equations must contain both x and y terms.	M1
	$x + 3y = -1 \implies x - 6 = -1 \implies x = 5$	Both $x = 5$ and $y = -2$.	A1
	$\{z=5-2i\}$		(7)
			7

edexcel

Question Number	Scheme	Notes	Marks	
7.	$\{S_n =\} \sum_{r=1}^n (2r-1)^2$			
(a)	$= \sum_{r=1}^{n} 4r^2 - 4r + 1$	Multiplying out brackets and an attempt to use at least one of the two standard formulae correctly.	M1	
	$= \underbrace{4.\frac{1}{6}n(n+1)(2n+1) - 4.\frac{1}{2}n(n+1)}_{6} + n$	<u>First two terms correct.</u> + n	A1 B1	
	$= \frac{2}{3}n(n+1)(2n+1) - 2n(n+1) + n$			
	$= \frac{1}{3}n\{2(n+1)(2n+1) - 6(n+1) + 3\}$	Attempt to factorise out $\frac{1}{3}n$ Correct expression with $\frac{1}{3}n$ factorised outwith no errors seen.	M1 A1	
	$= \frac{1}{3}n\left\{2(2n^2+3n+1) - 6(n+1) + 3\right\}$			
	$= \frac{1}{3}n\left\{4n^2 + 6n + 2 - 6n - 6 + 3\right\}$			
	$= \frac{1}{3}n\left(4n^2-1\right)$			
	$= \frac{1}{3}n(2n+1)(2n-1)$	Correct proof. No errors seen.	A1 *	6)
	Note that there are no mark	s for proof by induction.	_ `	,
(b)	$\sum_{r=n+1}^{3n} (2r-1)^2 = S_{3n} - S_n$			
	$= \frac{1}{3} \cdot 3n(6n+1)(6n-1) - \frac{1}{3}n(2n+1)(2n-1)$	Use of $S_{3n} - S_n$ or $S_{3n} - S_{n+1}$ with the result from (a) used at least once. Correct unsimplified expression. E.g. Allow 2(3 <i>n</i>) for 6 <i>n</i> .	M1 A1	
	Note that (b) says hence so they ha = $n(36n^2 - 1) - \frac{1}{3}n(4n^2 - 1)$		-	
	$= \frac{1}{3}n(108n^2 - 3 - 4n^2 + 1)$	Factorising out $\frac{1}{3}n$ (or $\frac{2}{3}n$)	dM1	
	$=\frac{1}{3}n(104n^2-2)$			
	$= \frac{2}{3}n(52n^2 - 1)$ { a = 52, b = -1 }	$\frac{2}{3}n(52n^2-1)$	A1 (4	4)
			1	10

edexcel

Question Number	Scheme	Notes	Marks
8.	$C: y^2 = 48x$ with general point $P(12t^2, 24t)$.		
(a)	$y^2 = 4ax \implies a = \frac{48}{4} = 12$	Using $y^2 = 4ax$ to find <i>a</i> .	M1
	So, directrix has the equation $x + 12 = 0$ Correct answer with no work	x + 12 = 0	A1 oe (2)
			(2)
(b)	$y = \sqrt{48} x^{\frac{1}{2}} \implies \frac{dy}{dx} = \frac{1}{2} \sqrt{48} x^{-\frac{1}{2}} \left(= 2\sqrt{3} x^{-\frac{1}{2}}\right)$ or (implicitly) $y^2 = 48x \Longrightarrow 2y \frac{dy}{dx} = 48$	$\frac{dy}{dx} = \pm k x^{-\frac{1}{2}}$ $ky \frac{dy}{dx} = c$	M1
	or (chain rule) $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} = 24 \times \frac{1}{24t}$	their $\frac{dy}{dt} \times \left(\frac{1}{\text{their}\frac{dx}{dt}}\right)$	
	When $x = 12t^2$, $\frac{dy}{dx} = \frac{\sqrt{48}}{2\sqrt{12t^2}} = \frac{\sqrt{4}}{2t} = \frac{1}{t}$ or $\frac{dy}{dx} = \frac{48}{2y} = \frac{48}{48t} = \frac{1}{t}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{t}$	A1
			-
	T : $y - 24t = \frac{1}{t}(x - 12t^2)$	Applies $y - 24t$ = their $m_T (x - 12t^2)$ or $y = (\text{their } m_T)x + c$ using $x = 12t^2$ and $y = 24t$ in an attempt to find c. Their m_T must be a function of t .	M1
	T : $ty - 24t^2 = x - 12t^2$		
	T : $x - ty + 12t^2 = 0$ Special case: If the gradient is <u>quoted</u> as	Correct solution. 1/t, this can score M0A0M1A1	A1 cso * (4)
(c)	Compare $P(12t^2, 24t)$ with (3, 12) gives $t = \frac{1}{2}$.	$t = \frac{1}{2}$	B1
	NB $x - ty + 12t^2 = 0$ with $x = 3$ and $y = 12$ gives 4	$t^{2} - 4t + 1 = 0 = (2t - 1)^{2} \Longrightarrow t = \frac{1}{2}$	
	$t = \frac{1}{2}$ into T gives $x - \frac{1}{2}y + 3 = 0$ See Appendix for an alternative appendix	Substitutes their <i>t</i> into T .	M1
	At X, $x = -12 \Rightarrow -12 - \frac{1}{2}y + 3 = 0$	Substitutes their x from (a) into T .	M1
	So, $-9 = \frac{1}{2}y \implies y = -18$		
	So the coordinates of <i>X</i> are $(-12, -18)$.	(-12, -18)	A1
	The coordinates must be together at the end for the		(4)
			10

10

Question Number	Scheme	Notes	Marks
9. (a)	$n = 1;$ LHS $= \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}^1 = \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}$		
	RHS = $\begin{pmatrix} 3^1 & 0 \\ 3(3^1 - 1) & 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}$	Check to see that the result is	
	As LHS = RHS, the matrix result is true for $n = 1$.	true for $n = 1$.	B1
	Assume that the matrix equation is true for $n = k$, ie. $\begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}^k = \begin{pmatrix} 3^k & 0 \\ 3(3^k - 1) & 1 \end{pmatrix}$		
	With $n = k+1$ the matrix equation becomes $\begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}^{k+1} = \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}^k \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}$		
	$= \begin{pmatrix} 3^{k} & 0 \\ 3(3^{k} - 1) & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix} \text{or} \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix} \begin{pmatrix} 3^{k} & 0 \\ 3(3^{k} - 1) & 1 \end{pmatrix}$	$\begin{pmatrix} 3^k & 0 \\ 3(3^k - 1) & 1 \end{pmatrix} by \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}$	M1
	$= \begin{pmatrix} 3^{k+1} + 0 & 0 + 0 \\ 9(3^{k} - 1) + 6 & 0 + 1 \end{pmatrix} \text{or} \begin{pmatrix} 3^{k+1} + 0 & 0 + 0 \\ 6.3^{k} + 3(3^{k} - 1) & 0 + 1 \end{pmatrix}$	Correct unsimplified matrix with no errors seen.	A1
	$= \begin{pmatrix} 3^{k+1} & 0\\ 9(3^k) - 3 & 1 \end{pmatrix}$		
	$= \begin{pmatrix} 3^{k+1} & 0\\ 3(3(3^k) - 1) & 1 \end{pmatrix}$		
	$= \begin{pmatrix} 3^{k+1} & 0\\ 3(3^{k+1} - 1) & 1 \end{pmatrix}$	Manipulates so that $k \rightarrow k+1$ on at least one term. Correct result with no errors seen with some working between this and the previous A1	dM1 A1
	If the result is true for $n = k$, (1) then it is now true for $n = k+1$. (2) As the result has shown to be true for $n = 1$, (3) then the result is true for all n . (4) All 4 aspects need to be mentioned at some point for the last A1.	Correct conclusion with all previous marks earned	A1 cso
	1005 / 110	<u> </u>	(6)

11

Question Number	Scheme	Notes	Marks
9. (b)	f (1) = $7^{2-1} + 5 = 7 + 5 = 12$, {which is divisible by 12}. { \therefore f (n) is divisible by 12 when $n = 1$.}	Shows that $f(1) = 12$.	B1
	Assume that for $n = k$, $f(k) = 7^{2k-1} + 5$ is divisible by 12 for $k \in e^+$.		
	So, $f(k + 1) = 7^{2(k+1)-1} + 5$	Correct unsimplified expression for $f(k + 1)$.	B1
	giving, $f(k + 1) = 7^{2k+1} + 5$		
	$\therefore f(k+1) - f(k) = (7^{2k+1} + 5) - (7^{2k-1} + 5)$	Applies $f(k+1) - f(k)$. No simplification is necessary and condone missing brackets.	M1
	$= 7^{2k+1} - 7^{2k-1}$		
	$= 7^{2k-1} \left(7^2 - 1 \right)$	Attempting to isolate 7^{2k-1}	M1
	$=48(7^{2k-1})$	$48(7^{2k-1})$	Alcso
	$\therefore f(k+1) = f(k) + 48(7^{2k-1}), \text{ which is divisible by}$ 12 as both $f(k)$ and $48(7^{2k-1})$ are both divisible by		
	12 as both $1(k)$ and $4s(7 - 1)$ are both divisible by 12.(1) If the result is true for $n = k$, (2) then it is now true for $n = k+1$. (3) As the result has shown to be true for $n = 1$,(4) then the result is true for all n . (5). All 5 aspects need to be mentioned at some point for the last A1.	Correct conclusion with no incorrect work. Don't condone missing brackets.	A1 cso
	There are other ways of proving this by induction. S If you are in any doubt consult your team leader a		(6) 12

Appendix

Question Number	Scheme	Notes	Marks
Aliter	2 10 20 0		
2. (c) Way 2	$z^2 - 10z + 28 = 0$		
way 2	$(z-5)^2 - 25 + 28 = 0$	$(z\pm 5)^2\pm 25+28=0$	M1
	$\left(z-5\right)^2=-3$		_
	$z - 5 = \sqrt{-3}$		
	$z - 5 = \sqrt{3}i$	Attempt to express their $\sqrt{-3}$ in terms of i.	M1
	So, $z = 5 \pm \sqrt{3}i$. { $p = 5, q = 3$ }	$5 \pm \sqrt{3}i$	A1 oe (3)
			(5)

Question Number	Scheme		Marks	
Aliter 2. (c) Way 3	$z^{2} - 10z + 28 = 0$ $\left(z - \left(p + i\sqrt{q}\right)\right)\left(z - \left(p - i\sqrt{q}\right)\right) = z^{2} - 2pz + p^{2} + q$		-	
	$2p = \pm 10 and p^2 \pm q = 28$ $2p = \pm 10 \implies p = 5$ p = 5 and q = 3	Uses sum and product of roots Attempt to solve for <i>p</i> (or <i>q</i>)	M1 M1 A1	
			(3)

Question Number	Scheme	Notes	Marks
Aliter			
8. (c)	$\frac{dy}{dx} = 2\sqrt{3} x^{-\frac{1}{2}} = \frac{2\sqrt{3}}{\sqrt{3}} = 2$		B1
Way 2			
	Gives $y - 12 = 2(x - 3)$	Uses (3, 12) and their "2" to find the equation of the tangent.	M1
	$x = -12 \Longrightarrow y - 12 = 2(-12 - 3)$	Substitutes their <i>x</i> from (a) into their tangent	M1
	y = -18		
	So the coordinates of <i>X</i> are $(-12, -18)$.		A1
			(4)

Question Number	Scheme	Notes	Marks
Aliter			
9. (b)	$f(1) = 7^{2^{-1}} + 5 = 7 + 5 = 12,$	Shows that $f(1) = 12$.	B1
Way 2	{which is divisible by 12}. { \therefore f (n) is divisible by 12 when $n = 1$.}		
	Assume that for $n = k$,		
	$f(k) = 7^{2k-1} + 5$ is divisible by 12 for $k \in \phi^+$.		
	So, $f(k + 1) = 7^{2(k+1)-1} + 5$	Correct expression for $f(k + 1)$.	B1
	giving, $f(k+1) = 7^{2k+1} + 5$		
	$7^{2k+1} + 5 = 49 \times 7^{2k-1} + 5$	Attempt to isolate 7^{2k-1}	M1
	$=49 \times (7^{2k-1} + 5) - 240$	M1 Attempt to isolate $7^{2k-1} + 5$	M1
	$f(k+1) = 49 \times f(k) - 240$	Correct expression in terms of $f(k)$	A1
	As both $f(k)$ and 240 are divisible by 12 then so is $f(k + 1)$. If the result is true for $n = k$, then it		
	is now true for $n = k+1$. As the result has	Correct conclusion	A1
	shown to be true for $n = 1$, then the result is true		
	for all <i>n</i> .		
			(6)

Question Number	Scheme	Notes	Marks
Aliter			
9. (b)	$f(1) = 7^{2-1} + 5 = 7 + 5 = 12,$	Shows that $f(1) = 12$.	B1
Way 3	{which is divisible by 12}.		
	$\{: f(n) \text{ is divisible by } 12 \text{ when } n = 1.\}$		
	Assume that for $n = k$, f(k) is divisible by 12		
	$so f(k) = 7^{2k-1} + 5 = 12m$		
		1	
	So, $f(k+1) = 7^{2(k+1)-1} + 5$	Correct expression for $f(k + 1)$.	 B1
	giving, $f(k+1) = 7^{2k+1} + 5$		
	$7^{2k+1} + 5 = 7^2 \cdot 7^{2k-1} + 5 = 49 \times 7^{2k-1} + 5$	Attempt to isolate 7 ^{2k-1}	M1
	$=49\times(12m-5)+5$	Substitute for <i>m</i>	M1
	$f(k+1) = 49 \times 12m - 240$	Correct expression in terms of <i>m</i>	A1
	As both $49 \times 12m$ and 240 are divisible by 12		
	then so is $f(k + 1)$. If the result is true for $n = k$,		
	then it is now true for $n = k+1$. As the result	Correct conclusion	A1
	has shown to be true for $n = 1$, then the result is		
	true for all <i>n</i> .		
			(6)

Question Number	Scheme	Notes	Marks
Aliter			
9. (b)	$f(1) = 7^{2-1} + 5 = 7 + 5 = 12,$	Shows that $f(1) = 12$.	B1
Way 4	{which is divisible by 12}.		
	{ \therefore f (<i>n</i>) is divisible by 12 when $n = 1$.}		-
	Assume that for $n = k$,		-
	$f(k) = 7^{2k-1} + 5$ is divisible by 12 for $k \in \mathfrak{E}^+$.		
	$f(k+1) + 35f(k) = 7^{2(k+1)-1} + 5 + 35(7^{2k-1} + 5)$	Correct expression for $f(k + 1)$.	B1
	$f(k+1) + 35f(k) = 7^{2k+1} + 5 + 35(7^{2k-1} + 5)$	Add appropriate multiple of $f(k)$ For 7^{2k} this is likely to be 35 (119, 203,.) For 7^{2k-1} 11 (23, 35, 47,)	M1
	giving, $7.7^{2k} + 5 + 5.7^{2k} + 175$	Attempt to isolate 7^{2k}	M1
	$= 180 + 12 \times 7^{2k} = 12(15 + 7^{2k})$	Correct expression	A1
	: $f(k+1) = 12(7^{2k} + 15) - 35f(k)$. As both $f(k)$		-
	and $12(7^{2k} + 15)$ are divisible by 12 then so is		
	f(k + 1). If the result is true for $n = k$, then it is	Correct conclusion	A1
	now true for $n = k+1$. As the result has shown		
	to be true for $n = 1$, then the result is true for all		
	<i>n</i> .		
			(6)

Mark Scheme (Results)

January 2012

GCE Further Pure FP1 (6667) Paper 01

ALWAYS LEARNING

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Question Number	Scheme	Notes	Marks
1(a)	$\arg z_1 = -\arctan(1)$	- arctan(1) or arctan(1) or arctan(-1)	M1
	$=-\frac{\pi}{4}$	or -45 or awrt -0.785 (oe e.g $\frac{7\pi}{4}$)	A1
	Correct a	nswer only 2/2	(2)
(b)	$z_1 z_2 = (1 - i)(3 + 4i) = 3 - 3i + 4i - 4i^2$	At least 3 correct terms (Unsimplified)	M1
	= 7 + i	cao	A1
			(2)
(c)	$\frac{z_2}{z_1} = \frac{(3+4i)}{(1-i)} = \frac{(3+4i).(1+i)}{(1-i).(1+i)}$	Multiply top and bottom by $(1 + i)$	M1
	$= \frac{(3+4i).(1+i)}{2}$ $= -\frac{1}{2} + \frac{7}{2}i$	(1+i)(1-i) = 2	A1
	$= -\frac{1}{2} + \frac{7}{2}i$	or $\frac{-1+7i}{2}$	A1
	Special case $\frac{z_1}{z_2} = \frac{(1-i)}{(3+4i)} = \frac{1}{(3+4i)}$	$\frac{2}{(1-i).(3-4i)}$ (1-i).(3-4i) Allow M1A0A0	
			(3)
	Correct answers only in	(b) and (c) scores no marks	Total 7

January 2012 6667 Further Pure Mathematics FP1 Mark Scheme

Question Number	Scheme	Notes	Marks
2	$f(x) = x^4 + x - 1$		
(a)	$f(0.5) = -0.4375 (-\frac{7}{16})$ $f(1) = 1$	Either any one of $f(0.5) = awrt - 0.4$ or $f(1) = 1$	M1
	Sign change (positive, negative) (and $f(x)$ is continuous) therefore (a root) α is between x = 0.5 and $x = 1.0$	f(0.5) = awrt -0.4 and $f(1) = 1$, sign change and conclusion	A1
			(2)
(b)	$f(0.75) = 0.06640625(\frac{17}{256})$	Attempt f(0.75)	M1
	$f(0.625) = -0.222412109375(-\frac{911}{4096})$	$f(0.75) = awrt \ 0.07$ and $f(0.625) = awrt \ -0.2$	A1
		0.625 , α , 0.75 or 0.625 < α < 0.75	
	0.625 ", α " 0.75	or [0.625, 0.75] or (0.625, 0.75). or equivalent in words.	A1
	In (b) there is no credit for		(3)
	correct answer with no w	-	
(c)	$f'(x) = 4x^3 + 1$	Correct derivative (May be implied later by e.g. $4(0.75)^3 + 1$)	B1
	$x_1 = 0.75$		
	$x_2 = 0.75 - \frac{f(0.75)}{f'(0.75)} = 0.75 - \frac{0.06640625}{2.6875(43/16)}$	Attempt Newton-Raphson	M1
		Correct first application – a correct	
	$x_2 = 0.72529(06976) = \frac{499}{688}$	numerical expression e.g. $0.75 - \frac{\frac{17}{256}}{\frac{43}{16}}$	A1
		or awrt 0.725 (may be implied)	
	$x_3 = 0.724493 \left(\frac{499}{688} - \frac{0.002015718978}{2.562146811}\right)$	Awrt 0.724	A1
	$(\alpha) = 0.724$	cao	A1
	A final answer of 0.724 with evidence of 1 work should score 5/5	NR applied twice with no incorrect	(5)
	WOLK SHOULD SCOLE 3/3		Total 10

Question Number	Scheme	Notes	Marks
3(a)	Focus (4,0)		B1
	Directrix $x + 4 = 0$	x + "4" = 0 or x = - "4"	M1
	Directrix $x + 4 = 0$	x + 4 = 0 or $x = -4$	A1
			(3)
(b)	$y = 4x^{\frac{1}{2}} \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 2x^{-\frac{1}{2}}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = k \; x^{-\frac{1}{2}}$	
	$y^2 = 16x \Longrightarrow 2y \frac{dy}{dx} = 16$	$ky\frac{\mathrm{d}y}{\mathrm{d}x} = c$	
	or $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = 8 \cdot \frac{1}{8t}$	their $\frac{dy}{dt} \times \left(\frac{1}{\text{their}\frac{dx}{dt}}\right)$	M1
	$\frac{dy}{dx} = 2x^{-\frac{1}{2}} \operatorname{or} 2y \frac{dy}{dx} = 16 \operatorname{or} \frac{dy}{dx} = 8 \cdot \frac{1}{8t}$	Correct differentiation	A1
	At <i>P</i> , gradient of normal = $-t$	Correct normal gradient with no errors seen.	A1
	$y - 8t = -t(x - 4t^2)$	Applies $y - 8t$ = their $m_N (x - 4t^2)$ or $y = (\text{their } m_N)x + c$ using $x = 4t^2$ and $y = 8t$ in an attempt to find c. Their m_N must be different from their m_T and must be a function of t .	M1
	$y + tx = 8t + 4t^3 *$	cso **given answer**	A1
	Special case – if the correct gradient i	s <u>quoted</u> could score M0A0A0M1A1	(5) Total 8

Question Number	Scheme	Notes	Marks
4(a)	$ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 & 2 \\ 1 & 1 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 4 \\ 1 & 2 & 2 \end{pmatrix} $	Attempt to multiply the right way round with at least 4 correct elements	M1
	<i>T'</i> has coordinates (1,1), (1,2) and (4,2) or $\begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} 1\\2 \end{pmatrix}, \begin{pmatrix} 4\\2 \end{pmatrix}$ NOT just $\begin{pmatrix} 1 & 1 & 4\\1 & 2 & 2 \end{pmatrix}$	Correct coordinates or vectors	A1
4			(2)
(b)		Reflection	B1
	Reflection in the line $y = x$	y = x	B1
	Allow 'in the axis' 'about the line' $y = x$ etc. Provided bot reference to the origin unless there is a c		
(-)			(2)
(c)	$\mathbf{QR} = \begin{pmatrix} 4 & -2 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} -2 & 0 \\ 0 & 2 \end{pmatrix}$	2 correct elements	M1
		Correct matrix	A1
	Note that $\mathbf{RQ} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 4 & -2 \\ 3 & -1 \end{pmatrix} = \begin{pmatrix} 10 \\ 24 \end{pmatrix}$	$\begin{pmatrix} -4 \\ -10 \end{pmatrix}$ scores M0A0 in (c) but	
	allow all the marks in (d) and (e)		
			(2)
(d)	$\det\left(\mathbf{QR}\right) = -2 \times 2 - 0 = -4$	"-2"x"2" – "0"x"0"	M1
		-4	A1 (2)
	Answer only scores 2/2		
	$\frac{1}{\det(\mathbf{QR})}$ scores M	0	
(e)	Area of $T = \frac{1}{2} \times 1 \times 3 = \frac{3}{2}$	Correct area for T	B1
		Attempt at " $\frac{3}{2}$ "× ±"4"	M1
	Area of $T'' = \frac{3}{2} \times 4 = 6$	6 or follow through their det(QR) x Their triangle area provided area > 0	A1ft
			(3)
			Total 11

Number	Scheme	Notes	Marks
5(a)	$(z_2) = 3 - i$		B1
	$(z - (3 + i))(z - (3 - i)) = z^2 - 6z + 10$	Attempt to expand $(z - (3 + i))(z - (3 - i))$ or any valid method to establish the quadratic factor e.g. $z = 3 \pm i \Rightarrow z - 3 = \pm i \Rightarrow z^2 - 6z + 9 = -1$ $z = 3 \pm \sqrt{-1} = \frac{6 \pm \sqrt{-4}}{2} \Rightarrow b = -6, c = 10$ Sum of roots 6, product of roots 10 $\therefore z^2 - 6z + 10$	M1
	$(z^2 - 6z + 10)(z - 2) = 0$	Attempt at linear factor with their <i>cd</i> in $(z^2 + az + c)(z + d) = \pm 20$ Or $(z^2 - 6z + 10)(z + a) \Rightarrow 10a = -20$ Or attempts f(2)	M1
-	$(z_3) = 2$		A1
5(b)	with coordinates (allow points/lines/cro on imaginary axis. Second B1 for plotting (2, 0) correctly 1	3, 1 3, 1 2.5 3 3.5 Re 3.5 Re 3.7 3.5 Re 3.7 3.5 Re 3.7 3.5 Re 3.7 3.5 Re 3.7 3.5 Re 3.7 3.5 Re 3.7 3.5 Re 3.7 3.5 Re 3.7 3.7 3.5 Re 3.7 3.5 Re 3.7 3.7 3.5 Re 3.7 3.7 3.5 Re 3.7	B1 B1
5(b)	Argand Diagram Im 1.5 1 0.5 0 0.5 1 1.5 2.0 0.5 1 1.5 2.0 0.5 1 1.5 2 0 0.5 1 1.5 2 0 0 0.5 1 1.5 2 0 0 0 0 0 0 0 0 0 1 1.5 2 0 0 0 0 0 0 0 0 0 0 0 0 0	2.5 3 3.5 Re 3, -1 3, -1 prrectly with an indication of scale or labelled prrectly with an indication of scale or labelled relative to the conjugate pair with an indication	

Question Number	Scheme		Notes	Marks
6(a)	$n = 1$, LHS = $1^3 = 1$, RHS = $\frac{1}{4} \times 1^2 \times 2^2 = 1$	Shows both LHS	= 1 and RHS $= 1$	B1
	Assume true for $n = k$			
	When n = k + 1 $\sum_{r=1}^{k+1} r^3 = \frac{1}{4}k^2(k+1)^2 + (k+1)^3$	Adds $(k + 1)^3$ to t	he given result	M1
	1	Attempt to factor	ise out $\frac{1}{4}(k+1)^2$	dM1
	$= \frac{1}{4}(k+1)^{2}[k^{2}+4(k+1)]$	Correct expression	on with	
	+	$\frac{1}{4}(k+1)^2$ factoris	ed out.	A1
	$= \frac{1}{4}(k+1)^{2}(k+2)^{2}$ Must see 4 things: <u>true for n = 1</u> , <u>assumption true for n = k</u> , <u>said true for</u> <u>n = k + 1</u> and therefore true for all n	• 1 1	roof with no errors and previous marks must	Alcso
	See extra notes for a	alternative approa	aches	(5)
(b)	$\sum (r^3 - 2) = \sum r^3 - \sum 2$	Attempt two sum	S	M1
	$\sum r^3 - \sum$	$\sum 2n$ is M0		
	$=\frac{1}{4}n^{2}(n+1)^{2}-2n$	Correct expression	n	A1
	$= \frac{1}{4}n^{2}(n+1)^{2} - 2n$ $= \frac{n}{4}(n^{3} + 2n^{2} + n - 8) *$	Completion to pr errors seen.	inted answer with no	A1
				(3)
(c)	$\sum_{r=20}^{r=50} (r^3 - 2) = \frac{50}{4} \times 130042 - \frac{19}{4} \times 7592$	Attempt $S_{50} - S_{20}$ substitutes into a least once.	or $S_{50} - S_{19}$ and correct expression at	M1
	(=1625525 - 36062)	Correct numerica (unsimplified)	l expression	A1
	= 1 589 463	cao		A1
				(3)
(c) Way 2	$\sum_{r=20}^{r=50} (r^3 - 2) = \sum_{r=20}^{r=50} r^3 - \sum_{r=20}^{r=50} (2) = \frac{50^2}{4} \times 51^2 - \frac{100}{4} \times 50^2 - \frac{100}{4} \times 50$	$-\frac{19^2}{4} \times 20^2 - 2 \times 31$	$\begin{array}{c} \text{M1 for } (\text{S}_{50} - \text{S}_{20} \text{ or } \text{S}_{50} \\ - \text{S}_{19} \text{ for cubes}) - (2x30 \\ \text{ or } 2x31) \\ \hline \text{A1 correct numerical} \\ \text{ expression} \end{array}$	Total 11
	=1 589 463		A1	

Question Number	Scheme	Notes	Marks
7(a)	$u_2 = 3, u_3 = 7$		B1, B1
			(2)
(b)	At $n = 1$, $u_1 = 2^1 - 1 = 1$ and so result true for $n = 1$		B1
	Assume true for $n = k$; $u_k = 2^k - 1$		
	and so $u_{k+1} (= 2u_k + 1) = 2(2^k - 1) + 1$	Substitutes u_k into u_{k+1} (must see this line)	M1
		Correct expression	A1
	$u_{k+1} \left(= 2^{k+1} - 2 + 1\right) = 2^{k+1} - 1$	Correct completion to $u_{k+1} = 2^{k+1} - 1$	A1
	Must see 4 things: <u>true for $n = 1$,</u> assumption true for $n = k$, said true for n = k + 1 and therefore <u>true for all n</u>	Fully complete proof with no errors and comment. All the previous marks in (b) must have been scored.	A1cso
	Ignore any subsequent attempts e.g. <i>u</i>	$u_{k+2} = 2u_{k+1} + 1 = 2(2^{k+1} - 1) + 1$ etc.	(5)
			Total 7

Scheme		Notes	Marks	
$\det(\mathbf{A}) = 3 \times 0 - 2 \times 1 (= -2)$	Correct attem	pt at the determinant	M1	
$det(\mathbf{A}) \neq 0$ (so A is non singular)	det(A) = -2 a	nd some reference to zero	A1	
$\frac{1}{\det(\mathbf{A})} \leq \frac{1}{2}$	scores M0		((2)
$\mathbf{B}\mathbf{A}^2 = \mathbf{A} \Longrightarrow \mathbf{B}\mathbf{A} = \mathbf{I} \Longrightarrow \mathbf{B} = \mathbf{A}^{\mathbf{I}}$	Recognising t	that \mathbf{A}^{-1} is required	M1	
			M1	
$\mathbf{B} = -\frac{1}{2} \begin{pmatrix} 3 & 1 \\ -2 & 0 \end{pmatrix}$	$\frac{1}{\text{their det}(A)} \left($	(* *) (* *)	B1ft	
	2		A1	(4)
$\mathbf{A}^2 = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}$		Correct matrix	B1	
$ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} \Rightarrow \begin{cases} 2a + 6b = 0 \\ 3a + 11b = 1 \end{cases} or $	2c + 6d = 2 $3c + 11d = 3$	2 equations in a and b or 2 equations in c and d	M1	
$a = -\frac{3}{2}, b = \frac{1}{2}, c = 1, d = 0$		M1 Solves for a and b or c and d	M1A1	
2 2		A1 All 4 values correct		
$\mathbf{A}^2 = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}$		Correct matrix	B1	
$\left(\mathbf{A}^{2}\right)^{-1} = \frac{1}{"2"\times"11"-"3"\times"6"} \begin{pmatrix} "11" & "-3\\ "-6" & "2" \end{pmatrix}$	")see note	Attempt inverse of \mathbf{A}^2	M1	
$\mathbf{A} \left(\mathbf{A}^{2} \right)^{-1} = \frac{1}{4} \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 11 & -3 \\ -6 & 2 \end{pmatrix} or \frac{1}{4} \begin{pmatrix} 11 \\ -6 \end{pmatrix}$	$ \begin{array}{c} -3\\2 \end{array} \begin{pmatrix} 0 & 1\\2 & 3 \end{pmatrix} $	Attempts $\mathbf{A}(\mathbf{A}^2)^{-1} or(\mathbf{A}^2)^{-1} \mathbf{A}$	M1	
$\mathbf{B} = -\frac{1}{2} \begin{pmatrix} 3 & -1 \\ -2 & 0 \end{pmatrix}$		Fully correct answer	A1	
		Decomising that DA - I	D1	
	2d = 0 $+ 3d = 1$	Recognising that $\mathbf{B}\mathbf{A} = \mathbf{I}$ 2 equations in a and b or 2 equations in c and d	M1	
3 1		M1 Solves for a and b		
	$det(\mathbf{A}) = 3 \times 0 - 2 \times 1 (= -2)$ $det(\mathbf{A}) \neq 0 \text{ (so } \mathbf{A} \text{ is non singular)}$ $\frac{1}{det(\mathbf{A})} \neq 0$ $\mathbf{B}\mathbf{A}^{2} = \mathbf{A} \Rightarrow \mathbf{B}\mathbf{A} = \mathbf{I} \Rightarrow \mathbf{B} = \mathbf{A}^{-1}$ $\mathbf{B} = -\frac{1}{2} \begin{pmatrix} 3 & -1 \\ -2 & 0 \end{pmatrix}$ $\mathbf{Correct answe}$ $\mathbf{Ignore poor matrix algebra n}$ $\mathbf{A}^{2} = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} \Rightarrow \frac{2a + 6b = 0}{3a + 11b = 1} \text{ or }$ $a = -\frac{3}{2}, b = \frac{1}{2}, c = 1, d = 0$ $\mathbf{A}^{2} = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}$ $(\mathbf{A}^{2})^{-1} = \frac{1}{2}, c = 1, d = 0$ $\mathbf{A}^{2} = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}$ $\mathbf{A}(\mathbf{A}^{2})^{-1} = \frac{1}{4} \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 11 & -3 \\ -6 & 2 \end{pmatrix} \text{ or } \frac{1}{4} \begin{pmatrix} 11 \\ -6 \end{pmatrix}$ $\mathbf{B} = -\frac{1}{2} \begin{pmatrix} 3 & -1 \\ -2 & 0 \end{pmatrix}$ $\mathbf{B}\mathbf{A} = \mathbf{I}$	$det(\mathbf{A}) = 3 \times 0 - 2 \times 1(= -2)$ $det(\mathbf{A}) \neq 0 \text{ (so } \mathbf{A} \text{ is non singular)}$ $det(\mathbf{A}) \neq 0 \text{ (so } \mathbf{A} \text{ is non singular)}$ $det(\mathbf{A}) = -2 \text{ areas } \mathbf{M} 0$ $\mathbf{B}\mathbf{A}^2 = \mathbf{A} \Rightarrow \mathbf{B}\mathbf{A} = \mathbf{I} \Rightarrow \mathbf{B} = \mathbf{A}^{-1}$ $\mathbf{Recognising } \mathbf{A}$ $\mathbf{A} \text{ least } 3 \text{ cores } \mathbf{M} 0$ $\mathbf{B} = -\frac{1}{2} \begin{pmatrix} 3 & -1 \\ -2 & 0 \end{pmatrix}$ $\mathbf{A} \text{ t least } 3 \text{ cores } \mathbf{A} \text{ least } 3 least $	$det(\mathbf{A}) = 3 \times 0 - 2 \times 1(= -2)$ $det(\mathbf{A}) \neq 0 \text{ (so } \mathbf{A} \text{ is non singular)}$ $det(\mathbf{A}) \neq 0 \text{ (so } \mathbf{A} \text{ is non singular)}$ $det(\mathbf{A}) = -2 \text{ and some reference to zero}$ $\frac{1}{det(\mathbf{A})} \text{ scores } \mathbf{M0}$ $\mathbf{B}\mathbf{A}^2 = \mathbf{A} \Rightarrow \mathbf{B}\mathbf{A} = \mathbf{I} \Rightarrow \mathbf{B} = \mathbf{A}^{-1}$ $\mathbf{Recognising that } \mathbf{A}^{-1} \text{ is required}$ $\mathbf{A} \text{ t least 3 correct terms in } \begin{pmatrix} 3 & -1 \\ -2 & 0 \end{pmatrix}$ $\frac{1}{1 \text{ their det}(\mathbf{A}) \begin{pmatrix} * & * \\ * & * \end{pmatrix}}$ Fully correct answer $\mathbf{Correct answer only score 4/4}$ $\mathbf{Ignore poor matrix algebra notation if the intention is clear}$ $\mathbf{A}^2 = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}$ $\mathbf{Correct matrix}$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} \Rightarrow \frac{2a + 6b = 0}{3a + 11b = 1} \text{ or } \frac{2c + 6d = 2}{3c + 11d = 3}$ $\mathbf{Correct matrix}$ $\mathbf{A}^2 = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}$ $\mathbf{Correct matrix}$ $\mathbf{A}^2 = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}$ $\mathbf{Correct matrix}$ $\mathbf{A}^2 = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}$ $\mathbf{Correct matrix}$ $\mathbf{A}^2 = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}$ $\mathbf{Correct matrix}$ $\mathbf{A}^2 = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}$ $\mathbf{Correct matrix}$ $\mathbf{A}^2 = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}$ $\mathbf{Correct matrix}$ $\mathbf{A}^2 = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}$ $\mathbf{Correct matrix}$ $\mathbf{A}^2 = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}$ $\mathbf{Correct matrix}$ $\mathbf{A}^2 = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}$ $\mathbf{Correct matrix}$ $\mathbf{A}^2 = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}$ $\mathbf{Correct matrix}$ $\mathbf{A}^2 = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}$ $\mathbf{Correct matrix}$ $\mathbf{A}^2 = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}$ $\mathbf{Correct matrix}$ $\mathbf{A}^2 = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}$ $\mathbf{Correct matrix}$ $\mathbf{A}^2 = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}$ $\mathbf{Correct matrix}$ $\mathbf{A}^2 = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}$ $\mathbf{Correct matrix}$ $\mathbf{A}^2 = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}$ $\mathbf{Correct matrix}$ $\mathbf{A}^2 = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}$ $\mathbf{Correct matrix}$ $\mathbf{A}^2 = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}$ $\mathbf{Correct matrix}$ $\mathbf{A}^2 = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}$ $\mathbf{Correct matrix}$ $\mathbf{A}^2 = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}$ $\mathbf{Correct matrix}$ $\mathbf{A}^2 = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}$ $\mathbf{Correct matrix}$ $\mathbf{A}^2 = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}$ $\mathbf{Correct matrix}$ $\mathbf{A}^2 = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}$ $\mathbf{Correct matrix}$ $\mathbf{A}^2 = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}$ $\mathbf{Correct matrix}$ $\mathbf{A}^2 = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}$ $\mathbf{Correct matrix}$ $\mathbf{A}^2 = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}$ $Correct m$	$\begin{array}{c c c c c c c c } \begin{tabular}{ c c c c c c } \hline & & & & & & & & & & & & & & & & & & $

Question Number	Scheme	Notes	Marks
9 (a)	$y = 9x^{-1} \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -9x^{-2}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = k x^{-2}$	
	$xy = 9 \Longrightarrow x \frac{\mathrm{d}y}{\mathrm{d}x} + y = 0$	Correct use of product rule. The sum of two terms, one of which is correct.	M1
	or $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = \frac{-3}{p^2} \cdot \frac{1}{3}$	their $\frac{dy}{dt} \times \left(\frac{1}{\text{their}\frac{dx}{dt}}\right)$	M1
	$\frac{dy}{dx} = -9x^{-2} \text{ or } x \frac{dy}{dx} + y = 0 \text{ or } \frac{dy}{dx} = \frac{-3}{p^2} \cdot \frac{1}{3}$	Correct differentiation.	A1
		Applies $y - \frac{3}{p} = (\text{their } m)(x - 3p)$ or	
	$y - \frac{3}{p} = -\frac{1}{p^2}(x - 3p)$	y = (their m)x + c using	
	$p p^2$	$x = 3p$ and $y = \frac{3}{p}$ in an attempt to find c.	M1
		Their m must be a function of p and come from their dy/dx.	
	$x + p^2 y = 6p *$	Cso **given answer**	A1
	Special case – if the correct gradient	is <u>quoted</u> could score M0A0M1A1	(4)
(b)	$x + q^2 y = 6q$	Allow this to score here or in (c)	B1
(c)	$6p - p^2 y = 6q - q^2 y$	Attempt to obtain an equation in one variable <i>x</i> or <i>y</i>	(1) M1
	$y(q^{2} - p^{2}) = 6(q - p) \Rightarrow y = \frac{6(q - p)}{q^{2} - p^{2}}$ $x(q^{2} - p^{2}) = 6pq(q - p) \Rightarrow x = \frac{6pq(q - p)}{q^{2} - p^{2}}$	Attempt to isolate <i>x</i> or <i>y</i> – must reach <i>x</i> or <i>y</i> = $f(p, q)$ or $f(p)$ or $f(q)$	M1
	$y = \frac{6}{p+q}$	One correct simplified coordinate	A1
	$x = \frac{6pq}{p+q}$	Both coordinates correct and simplified	A1
			(4)
			Total 9

Extra Notes

PMT

To show equivalence between $\frac{1}{4}k^2(k+1)^2 + (k+1)^3$ and $\frac{1}{4}(k+1)^2(k+2)^2$ 6(a)

$$\frac{1}{4}k^{2}(k+1)^{2} + (k+1)^{3} = \frac{1}{4}k^{4} + \frac{3}{2}k^{3} + \frac{13}{4}k^{2} + 3k + 1$$

Attempt to expand one correct expression up to a quartic **M1**

$$\frac{1}{4}(k+1)^2(k+2)^2 = \frac{1}{4}k^4 + \frac{3}{2}k^3 + \frac{13}{4}k^2 + 3k + 1$$

Attempt to expand both correct expressions up to a quartic	M1
One expansion completely correct (dependent on both M's)	A1
Both expansions correct and conclusion	A1

Or

To show
$$\frac{1}{4}(k+1)^2(k+2)^2 - \frac{1}{4}k^2(k+1)^2 = (k+1)^3$$

 $\frac{1}{4}(k+1)^2(k+2)^2 - \frac{1}{4}k^2(k+1)^2$ Attempt to subtract M1
 $\frac{1}{4}(k+1)^2(k+2)^2 - \frac{1}{4}k^2(k+1)^2 = k^3 + 3k^2 + 3k + 1$ Obtains a cubic expression M1
Correct expression A1
 $\frac{1}{4}(k+1)^2(k+2)^2 - \frac{1}{4}k^2(k+1)^2 = (k+1)^3$ Correct completion and comment A1

8(b) Way 3

Attempting inverse of \mathbf{A}^2 needs to be recognisable as an attempt at an inverse

E.g
$$(\mathbf{A}^2)^{-1} = \frac{1}{Their \, Det(\mathbf{A}^2)} (A \, changed \, \mathbf{A}^2)$$

Mark Scheme (Results)

Summer 2012

GCE Mathematics 6667 Further Pure 1

Question Number	Scheme	Notes	Marks
	$f(x) = 2x^3 - 6x^2 - 7x - 4$		
1. (a)	$f(4) = \underline{128 - 96 - 28 - 4} = 0$	$\frac{128 - 96 - 28 - 4 = 0}{28 - 4}$	B1
	<u>Just</u> $2(4)^3 - 6(4)^2 - 7(4) - 4 = 0$ or 2(64)	-6(16) - 7(4) - 4 = 0 is B0	
	But $2(64) - 6(16) - 7(4) - 4 = 128 - 128 = 0 \text{ or } 2(4)^3$	$-6(4)^2 - 7(4) - 4 = 4 - 4 = 0$ is B1	
	There must be sufficient working t	$o \underline{show} that f(4) = 0$	
			[1]
(b)	$f(4) = 0 \implies (x - 4)$ is a factor.		
		M1: $(2x^2 + kx + 1)$	
	$f(x) = (x - 4)(2x^2 + 2x + 1)$	Uses inspection or long division or compares coefficients and $(x - 4)$ (not $(x + 4)$) to obtain a quadratic factor of this form.	M1A1
		A1: $(2x^2 + 2x + 1)$ cao	
	So, $x = \frac{-2 \pm \sqrt{4 - 4(2)(1)}}{2(2)}$ $(2)\left(x^2 + x + \frac{1}{2}\right) = 0 \Rightarrow (2)\left(\left(x \pm \frac{1}{2}\right)^2 \pm k \pm \frac{1}{2}\right) k \neq 0 \Rightarrow x =$	Use of correct quadratic formula for their <u>3TO</u> or completes the square.	M1
	Allow an attempt at factorisation provided the	usual conditions are satisfied and	
	proceeds as far as a	<u>x =</u>	
	$\Rightarrow x = \frac{-2 \pm \sqrt{-4}}{2(2)}$ $\Rightarrow x = 4, \ \frac{-2 \pm 2i}{4}$		
	$\Rightarrow x = 4, \ \frac{-2 \pm 2i}{4}$	All <u>three</u> roots stated somewhere in (b). Complex roots must be at least as given but apply isw if necessary.	A1
			[4]
L			5 marks

Question Number	Scheme	Notes	Marks
2. (a)	$\mathbf{A} = \begin{pmatrix} 3 & 1 & 3 \\ 4 & 5 & 5 \end{pmatrix},$	$\mathbf{B} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 0 & -1 \end{pmatrix}$	
	$\mathbf{AB} = \begin{pmatrix} 3 & 1 & 3 \\ 4 & 5 & 5 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 0 & -1 \end{pmatrix}$		
	$= \begin{pmatrix} 3+1+0 & 3+2-3\\ 4+5+0 & 4+10-5 \end{pmatrix}$	A correct method to multiply out two matrices. Can be implied by two out of four correct (unsimplified) elements in a <u>dimensionally correct</u> matrix. A 2x2 matrix with a number or a calculation at each corner.	M1
	$= \begin{pmatrix} 4 & 2 \\ 9 & 9 \end{pmatrix}$	Correct answer	A1
	A correct answer with no wo	rking can score both marks	
			[2]
(b)	$\mathbf{C} = \begin{pmatrix} 3 & 2 \\ 8 & 6 \end{pmatrix}, \ \mathbf{D} = \begin{pmatrix} 5 & 2k \\ 4 & k \end{pmatrix}$), where k is a constant,	
	$\mathbf{C} + \mathbf{D} = \begin{pmatrix} 3 & 2 \\ 8 & 6 \end{pmatrix} + \begin{pmatrix} 5 & 2k \\ 4 & k \end{pmatrix} = \begin{pmatrix} 8 & 2k+2 \\ 12 & 6+k \end{pmatrix}$	An attempt to add C to D. Can be implied by two out of four correct (unsimplified) elements in a <u>dimensionally correct</u> matrix.	M1
	E does not have an inverse $\Rightarrow \det \mathbf{E} = 0$.		
	8(6+k) - 12(2k + 2)	Applies " $ad - bc$ " to E where E is a 2x2 matrix.	M1
	8(6+k) - 12(2k+2) = 0	States or applies $det(\mathbf{E}) = 0$ where $det(\mathbf{E}) = ad - bc$ or $ad + bc$ only and \mathbf{E} is a 2x2 matrix.	M1
	Note $8(6+k) - 12(2k+2) = 0$ or $8(6+k) - 12(2k+2) = 0$		
	48 + 8k = 24k + 24		
	24 = 16k		
	$k = \frac{3}{2}$		A1 oe
			[4]
			6 marks

Question Number	Scheme	Notes	Marks
3.	$f(x) = x^{2} + \frac{3}{4\sqrt{x}} - 3x - 7, x > 0$		
	$f(x) = x^2 + \frac{3}{4}x^{-\frac{1}{2}} - 3x - 7$		
	$f'(x) = 2x - \frac{3}{8}x^{-\frac{3}{2}} - 3\{+0\}$	M1: $x^n \rightarrow x^{n-1}$ on at least one term	M1A1
	$\frac{1}{8} \left(\frac{1}{2} \right) = \frac{1}{8} \left(\frac{1}{8} \left(\frac{1}{8$	A1: Correct differentiation.	
	f (4) = $-2.625 = -\frac{21}{8} = -2\frac{5}{8}$ or $4^2 + \frac{3}{4\sqrt{4}} - 3 \times 4 - 7$	f (4) = -2.625 A correct <u>evaluation</u> of f(4) or a correct <u>numerical expression</u> for f(4). This can be implied by a correct answer below but in all other cases, <u>f(4) must be</u> <u>seen explicitly evaluated</u> or as an <u>expression</u> .	B1
	$f'(4) = 4.953125 = \frac{317}{64} = 4\frac{61}{64}$	Attempt to insert $x = 4$ into their $f'(x)$. Not dependent on the first M but must be what they think is $f'(x)$.	M1
	$\alpha_2 = 4 - \left(\frac{"-2.625"}{"4.953125"}\right)$	Correct application of Newton-Raphson using their values.	M1
	$= 4.529968454 \left(= \frac{1436}{317} = 4\frac{168}{317} \right)$		
	= 4.53 (2 dp)	4.53 cso	A1 cao
	Note that the kind of errors that are being ma 4.53 but the final mark is cso and the final A1 sl	hould not be awarded in these cases.	
	Ignore any furth		
	A correct derivative followed by $\alpha_2 = 4 - \frac{f(4)}{f'(4)} = 4.53$ can score full marks.		
			[6
			6 marks

Question Number	Scheme	Notes	Marks
	$\sum_{n=1}^{n} (r^3 +$	6r - 3)	
4. (a)	r = 1	M1; An attempt to use at least one of the standard formulae correctly in summing at least 2 terms of $r^3 + 6r - 3$	
	$= \frac{\frac{1}{4}n^2(n+1)^2}{\frac{1}{2}} + \frac{6}{2}\frac{1}{2}n(n+1) - 3n$	A1: Correct underlined expression.	M1A1B1
		$B1: -3 \rightarrow -3n$	
	$= \frac{1}{4}n^2(n+1)^2 + 3n^2 + 3n - 3n$		
	If any marks have been lost, no furt	her marks are available in part (a)	
	$= \frac{1}{4}n^{2}(n+1)^{2} + 3n^{2}$ $= \frac{1}{4}n^{2}((n+1)^{2} + 12)$	Cancels out the 3 <i>n</i> and attempts to factorise out at least $\frac{1}{4}n$.	dM1
	$= \frac{1}{4}n^2 \left(n^2 + 2n + 13\right) $ (AG)	Correct answer with no errors seen.	A1 *
	Provided the first 3 marks are scored, allow the next two marks for correctly showing the algebraic equivalence. E.g. showing that both $\frac{1}{4}n^2(n+1)^2 + 6.\frac{1}{2}n(n+1) - 3n \text{ and } \frac{1}{4}n^2(n^2 + 2n + 13) = \frac{1}{4}n^4 + \frac{1}{2}n^3 + \frac{13}{4}n^2$		
	There are no marks for proof by induction but apply the scheme if necessary.		
	k		[5]
(b)	$S_n = \sum_{r=16}^{30} (r^3 + 6r - 3) = S_{30} - S_{15}$		
	$= \frac{1}{4} (30)^2 (30^2 + 2(30) + 13) - \frac{1}{4} (15)^2 (15^2 + 2(15)^2 + 2(15)^2) = \frac{1}{4} (15)^2 (15^2 + 2(15)^2) = \frac{1}{4} (15)^2 (15)^$	5) + 13) <u>Use</u> of $S_{30} - S_{15}$ or $S_{30} - S_{16}$	M1
	NB They must be using $S_n = \frac{1}{4}n^2 \left(\frac{1}{4} \right)^2 $	$n^{2} + 2n + 13$) not $S_{n} = n^{3} + 6n - 3$	
-	= 218925 - 15075		
	= 203850	203850	A1 cao
	NB $S_{30} - S_{16} = 218925 - 1926$	54 = 199661 (Scores M1 A0)	
			[2]
			7 marks

Question Number	Scheme	Notes	Marks
5.	$C: y^2 = 8x$	$\Rightarrow a = \frac{8}{4} = 2$	
(a)	$PQ = 12 \implies By symmetry y_p = \frac{12}{2} = \underline{6}$	$y = \underline{6}$	B1
			[1]
(b)	$y^2 = 8x \implies 6^2 = 8x$	Substitutes their y-coordinate into $y^2 = 8x$.	M1
	$\Rightarrow x = \frac{36}{\underline{8}} = \frac{9}{\underline{2}}$ (So <i>P</i> has coordinates $\left(\frac{9}{2}, 6\right)$)	$\Rightarrow x = \frac{36}{8} \text{ or } \frac{9}{2}$	A1 oe
			[2]
(c)	Focus $S(2, 0)$	Focus has coordinates (2, 0). Seen or implied. Can score anywhere.	B1
	Gradient $PS = \frac{6-0}{\frac{9}{2}-2} \left\{ = \frac{6}{\left(\frac{5}{2}\right)} = \frac{12}{5} \right\}$	Correct method for finding the gradient of the line segment <i>PS</i> . If no gradient formula is quoted and the gradient is incorrect, score M0 but allow this mark if there is a clear use of $\frac{y_2 - y_1}{x_2 - x_1}$ even if their coordinates are 'confused'.	M1
	Either $y - 0 = \frac{12}{5}(x - 2)$ or $y - 6 = \frac{12}{5}(x - \frac{9}{2})$; or $y = \frac{12}{5}x + c$ and $0 = \frac{12}{5}(2) + c \implies c = -\frac{24}{5}$;	$y - y_1 = m(x - x_1)$ with 'their <i>PS</i> gradient' and their (x_1, y_1) Their PS gradient must have come from using P and S (not calculus) and they must use their P or S as (x_1, y_1). or uses $y = mx + c$ with 'their gradient' in an attempt to find <i>c</i> . Their PS gradient must have come from using P and S (not calculus) and they must use their P or S as (x_1, y_1).	M1
	<i>l</i> : $12x - 5y - 24 = 0$	$\frac{12x - 5y - 24 = 0}{2}$	A1
	Allow any equivalent form e.g. $k(12)$	2x - 5y - 24) = 0 where <i>k</i> is an integer	
			[4]
			7 marks

Question Number	Scheme	Notes	Marks
6.	$f(x) = \tan\left(\frac{x}{2}\right) + 3x - 6,$	$-\pi < x < \pi$	
(a)	f(1) = -2.45369751 f(2) = 1.557407725	Attempts to evaluate both $f(1)$ and $f(2)$ and evaluates at least one of them correctly to awrt (or trunc.) 2 sf. Nm	M1
	Sign change (and $f(x)$ is continuous) therefore a root α is between $x = 1$ and $x = 2$.	Both values correct to awrt (or trunc.) 2 sf, sign change (or a statement which implies this e.g. $-2.453 < 0 < 1.5574$) and conclusion.	A1
			[2]
(b)	$\frac{\alpha - 1}{"2.45369751"} = \frac{2 - \alpha}{"1.557407725"}$ or $\frac{"2.45369751" + "1.557407725"}{1} = \frac{"2.45369751"}{\alpha - 1}$	Correct linear interpolation method. It must be a <u>correct statement</u> using their $f(2)$ and $f(1)$. Can be implied by working below.	M1
	If any "negative lengths" are	e used, score M0	
	$\alpha = 1 + \left(\frac{"2.45369751"}{"1.557407725" + "2.45369751"}\right) 1$ $= \frac{6.464802745}{4.011105235}$	Correct follow through expression to find α .Method can be implied here. (Can be implied by awrt 1.61.)	A1√
	= 1.611726037	awrt 1.61	A1
			[3]
			5 marks
	Special Case – Use of		1
	f(1) = -2.991273132 f(2) = 0.017455064	Attempts to evaluate both $f(1)$ and $f(2)$ and evaluates at least one of them correctly to awrt (or trunc.) 2 sf.	M1A0
	$\frac{\alpha - 1}{"2.991273132"} = \frac{2 - \alpha}{"0.017455064"}$	Correct linear interpolation method. It must be a <u>correct statement</u> using their f(2) and $f(1)$. Can be implied by working below.	M1
	If any "negative lengths" are		
	$\alpha = 1 + \left(\frac{"2.99127123"}{"0.017455064" + "2.99127123"}\right) 1$	Correct follow through expression to find α . Method can be implied here. (Can be implied by awrt 1.99.)	A1√
	= 1.994198523		A0

			11 marks
	Allow $\pm \left(\frac{14}{3\lambda + 4}\right) = \pm \infty \Longrightarrow 3\lambda$	$+4 = 0 \text{ M1} \Rightarrow \lambda = -\frac{4}{3} \text{ A1}$	
	50, <i>n</i> = - ₃	3	A1 [2]
	So real part of $(4 - 5i + 3w) = 0$ or $4 + 3\lambda = 0$ So, $\lambda = -\frac{4}{3}$	States real part of $(4 - 5i + 3w) = 0$ or $4 + 3\lambda = 0$ $-\frac{4}{3}$	M1
	(4-5i+3w=4-	,	
(d)	$w = \lambda - 3i$, and $arg(4 - 3i)$	Δ.	
			[4]
	$= 3 + 2i\sqrt{3}$ (Note: $c = 3, d = 2.$)	$3 + 2i\sqrt{3}$	A1
	$=\frac{12+8i\sqrt{3}}{4}$	$i^2 = -1$ in their numerator expression and denominator expression.	M1
	$= \frac{9 + 9i\sqrt{3} - i\sqrt{3} + 3}{1 + 3}$	Simplifies realising that a real number is needed in the denominator and applies	
	$= \frac{\left(9 - i\sqrt{3}\right)}{\left(1 - i\sqrt{3}\right)} \times \frac{\left(1 + i\sqrt{3}\right)}{\left(1 + i\sqrt{3}\right)}$	and multiplies by $\frac{\text{their } (1 + i\sqrt{3})}{\text{their } (1 + i\sqrt{3})}$	d M1
	$(9 - i\sqrt{3})$ $(1 + i\sqrt{3})$	Simplifies $\frac{z+7}{z-1}$	
(c)	$\frac{z+7}{z-1} = \frac{2-i\sqrt{3}+7}{2-i\sqrt{3}-1}$	Substitutes $z = 2 - i\sqrt{3}$ into both numerator and denominator.	M1
			[3]
	$z + z^2 = 2 - i\sqrt{3} + (4 - 4i\sqrt{3} + 3) = 9 - 5i$	$\sqrt{3}$ scores M1M0A0 (No evidence of $i^2 = -1$)	
	$= 3 - 5i\sqrt{3}$ (Note: $a = 3, b = -5.$)	A1: 3 – $5i\sqrt{3}$	
	$= 2 - i\sqrt{3} + (4 - 4i\sqrt{3} - 3)$ $= 2 - i\sqrt{3} + (1 - 4i\sqrt{3})$	attempt to add z and put in the form $a + bi\sqrt{3}$	M1A1
	$= 4 - 2i\sqrt{3} - 2i\sqrt{3} + 3i^{2}$	give four terms (or four terms implied). M1: An understanding that $i^2 = -1$ and an	
(b)	$z^2 = \left(2 - i\sqrt{3}\right)\left(2 - i\sqrt{3}\right)$	An attempt to multiply out the brackets to	 M1
	NB $\tan\left(\frac{\sqrt{3}}{2}\right) = 1.18$ and $\tan\left(\frac{2}{\sqrt{3}}\right)$	= 2.26 and both score M0	[2]
	= -0.7137243789 = -0.71 (2 dp)	awrt -0.71 or awrt 5.57	A1
	Awrt ±0.71 or awrt ±0.86 can be taken Or ±40.89 or ±49.10 if v	vorking in degrees	
(**)		evaluated	
7. (a)	$\arg z = -\tan^{-1}\left(\frac{\sqrt{3}}{2}\right)$	$\tan^{-1}\left(\pm\frac{\sqrt{3}}{2}\right)$ or $\tan^{-1}\left(\pm\frac{2}{\sqrt{3}}\right)$ seen or	M1
Question Number	Scheme	Notes	Marks

Question Number	Scheme	Notes	Marks
8.	$xy = c^2 z$	tt $(ct, \frac{c}{t})$.	
(a)	$y = \frac{c^2}{x} = c^2 x^{-1} \implies \frac{dy}{dx} = -c^2 x^{-2} = -\frac{c^2}{x^2}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = k x^{-2}$	
	$xy = c^2 \Longrightarrow x \frac{dy}{dx} + y = 0$	Correct use of product rule. The sum of two terms, one of which is correct and $rhs = 0$	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = -\frac{c}{t^2} \cdot \frac{1}{c}$	their $\frac{dy}{dt} \times \left(\frac{1}{\text{their}\frac{dx}{dt}}\right)$	
	$\frac{dy}{dx} = -c^2 x^{-2} \text{ or } x \frac{dy}{dx} + y = 0 \text{ or } \frac{dy}{dx} = \frac{-c}{t^2} \cdot \frac{1}{c}$ or equivalent expressions	Correct differentiation	A1
	So, $m_T = \frac{dy}{dx} = -\frac{1}{t^2}$	$-\frac{1}{t^2}$	
	$y - \frac{c}{t} = -\frac{1}{t^2} (x - ct)$ (×t ²)	$y - \frac{c}{t} = \text{their } m_T \left(x - ct \right) \text{ or}$ $y = mx + c \text{ with their } m_T \text{ and } (ct, \frac{c}{t}) \text{ in}$ an attempt to find 'c'. Their m_T must have come from calculus and should be a function of t or c or both c and t.	M1
	x + t2 y = 2ct (Allow $t2 y + x = 2ct$)	Correct solution.	A1 *
	(a) Candidates who derive $x + t^2 y = 2ct$, by score <u>no</u> marks in (a).	stating that $m_T = -\frac{1}{t^2}$, with no justification	
(b)			[4
(b)	$y = 0 \implies x = 2ct \implies A(2ct, 0).$	x = 2ct, seen or implied.	B1
	$x = 0 \implies y = \frac{2ct}{t^2} \implies B\left(0, \frac{2c}{t}\right).$	$y = \frac{2ct}{t^2}$ or $\frac{2c}{t}$, seen or implied.	B1
	Area $OAB = 36 \implies \frac{1}{2} (2ct) \left(\frac{2c}{t}\right) = 36$	Applies $\frac{1}{2}$ (their x)(their y) = 36 where x and y are functions of c or t or both (not x or y) and some attempt was made to substitute both x = 0 and y = 0 in the tangent to find A and B.	M1
	Do not allow the x and y coordinates of P to	b be used for the dimensions of the triangle.	
	$\Rightarrow 2c^2 = 36 \Rightarrow c^2 = 18 \Rightarrow c = 3\sqrt{2}$	$c = 3\sqrt{2}$	A1
		Do <u>not</u> allow $c = \pm 3\sqrt{2}$	[4
			8 marks

Question Number	Scheme	Notes	Marks
9.	det M = 3(-5) - (4)(2) = -15 - 8 = -23	-23	B1
(a)			[1]
(b)	Therefore, $\begin{pmatrix} 3 & 4 \\ 2 & -5 \end{pmatrix} \begin{pmatrix} 2a - 7 \\ a - 1 \end{pmatrix} = \begin{pmatrix} 25 \\ -14 \end{pmatrix}$	Using the information in the question to form the matrix equation. Can be implied by any of the correct equations below.	M1
	Either, $3(2a - 7) + 4(a - 1) = 25$ or 2(2a - 7) - 5(a - 1) = -14 or $\binom{3(2a - 7) + 4(a - 1)}{2(2a - 7) - 5(a - 1)} = \binom{25}{-14}$	Any one correct equation (unsimplified) inside or outside matrices	A1
	giving $a = 5$	<i>a</i> = 5	A1
			[3]
(c)	Area(<i>ORS</i>) = $\frac{1}{2}$ (6)(4); = <u>12</u> (units) ²	M1: $\frac{1}{2}$ (6) (Their $a - 1$)	M1A1
		A1: 12 cao and cso	
	Note A(6, 0) is sometimes misinterpreted as (0, 6 e.g.1/2x6x		
	C.g.1/2X0X		[2]
(d)	Area $(OR'S') = \pm 23 \times (12)$	$\pm \det \mathbf{M} \times (\text{their part } (c) \text{ answer})$	M1
()		276 (follow through provided area > 0)	
			A1 V
	A method not involving the determinant requires the coordinates of \mathbf{R}' to be calculated ((18, 12)) and then a <u>correct</u> method for the area e.g. $(26x25 - 7x13 - 9x12 - 7x25)$ M1 = 276 A1		
	12)) and then a <u>correct</u> method for the area e.g. (A	20x25 - 7x15 - 9x12 - 7x25 M1 = 270 A1	[2]
	Rotation; 90° anti-clockwise (or 270° clockwise)	B1: Rotation, Rotates, Rotate, Rotating (not turn)	
(e)	about $(0, 0)$.	B1:90° anti-clockwise (or $270°$ clockwise) about (around/from etc.) (0, 0)	B1;B1
			[2]
(f)	$\mathbf{M} = \mathbf{B}\mathbf{A}$	$\mathbf{M} = \mathbf{B}\mathbf{A}$, seen or implied.	[2] M1
(f)		~	
	$\mathbf{A}^{-1} = \frac{1}{(0)(0) - (1)(-1)} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}; = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	$\mathbf{A} = \begin{pmatrix} -1 & 0 \end{pmatrix}$	A1
	$\mathbf{B} = \begin{pmatrix} 3 & 4 \\ 2 & -5 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	Applies \mathbf{M} (their \mathbf{A}^{-1})	M1
	$\mathbf{B} = \begin{pmatrix} -4 & 3\\ 5 & 2 \end{pmatrix}$		A1
	NB some candidates state $\mathbf{M} = \mathbf{AB}$ and then calculate $\mathbf{A}^{-1}\mathbf{M}$. These could score M0A0 M		[4]
			14 marks
	Special c	ase	
(f)	$\mathbf{M} = \mathbf{A}\mathbf{B}$	$\mathbf{M} = \mathbf{A}\mathbf{B}$, seen or implied.	M0
~ /		$\mathbf{A}^{-1} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	A0
	$\mathbf{B} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 3 & 4 \\ 2 & -5 \end{pmatrix} = \begin{pmatrix} 2 & -5 \\ -3 & -4 \end{pmatrix}$	Applies (their \mathbf{A}^{-1}) M	M1A1ft

Question Number	Scheme	Notes	Marks
10.	$f(n) = 2^{2n-1} + 3^{2n-1}$ is divis	$f(n) = 2^{2n-1} + 3^{2n-1}$ is divisible by 5.	
	$f(1) = 2^1 + 3^1 = 5,$	Shows that $f(1) = 5$.	B1
	Assume that for $n = k$, $f(k) = 2^{2k-1} + 3^{2k-1}$ is divisible by 5 for $k \in \phi^+$.		
	$f(k+1) - f(k) = 2^{2(k+1)-1} + 3^{2(k+1)-1} - (2^{2k-1} + 3^{2k-1})$	M1: Attempts $f(k + 1) - f(k)$. A1: Correct expression for $\underline{f(k + 1)}$ (Can be unsimplified)	M1A1
	$= 2^{2k+1} + 3^{2k+1} - 2^{2k-1} - 3^{2k-1}$		
	$= 2^{2k-1+2} + 3^{2k-1+2} - 2^{2k-1} - 3^{2k-1}$		
	$= 4(2^{2k-1}) + 9(3^{2k-1}) - 2^{2k-1} - 3^{2k-1}$	Achieves an expression in 2^{2k-1} and 3^{2k-1}	M1
	$= 3(2^{2k-1}) + 8(3^{2k-1})$		
	$= 3(2^{2k-1}) + 3(3^{2k-1}) + 5(3^{2k-1})$		
	$= 3f(k) + 5(3^{2k-1})$		
	$\therefore f(k+1) = 4f(k) + 5(3^{2k-1}) \text{ or}$ $4(2^{2k-1} + 3^{2k-1}) + 5(3^{2k-1})$	Where $f(k + 1)$ is correct and is clearly a multiple of 5.	A1
	If the result is true for $n = k$, then it is now true for $n = k + 1$. As the result has shown to be true for $n = 1$, then the result is true for all n .	Correct conclusion at the end, at least as given, and all previous marks scored.	A1 cso
			[6]
			6 marks
	All methods should complete to $f(k + 1) =$ where $f(k + 1) = .$		
	Note that there are many different ways of pro	oving this result by induction.	

Appendix

- dM1 denotes a method mark which is dependent upon the award of the previous method mark.
- ddM1 denotes a method mark which is dependent upon the award of the previous two method marks.
- depM1 * denotes a method mark which is dependent upon the award of M1 *.
- ft denotes "follow through"
- cao denotes "correct answer only"
- aef denotes "any equivalent form"

Other Possible Solutions

Question Number	Scheme	Notes	Marks
Aliter 4.(a) Way 2	$\sum_{r=1}^{n} (r^{3} + 6r - 3)$		
	$= \frac{1}{4}n^2(n+1)^2 + 6.\frac{1}{2}n(n+1) - 3n$	An attempt to use at least one of the standard formulae correctly. <u>Correct underlined expression.</u> $-3 \rightarrow -3n$	M1 A1 B1
	If any marks have been lost, no furth	er marks are available in part (a).	
	$= \frac{1}{4}n(n(n+1)^{2} + 12(n+1) - 12)$ = $\frac{1}{4}n(n(n+1)^{2} + 12n + 12 - 12)$ = $\frac{1}{4}n(n(n+1)^{2} + 12n)$	Attempts to factorise out at least $\frac{1}{4}n$ from a <u>correct</u> expression and cancels the constant inside the brackets.	dM1
	$= \frac{1}{4}n^2 \left(n^2 + 2n + 13\right) $ (AG)	Correct answer	A1 * [5]
			5 marks

Question Number	Scheme	Notes	Marks
6 (b)	$y - f(2) = \frac{f(2) - f(1)}{2 - 1} (x - 2)$ or $y - f(1) = \frac{f(2) - f(1)}{2 - 1} (x - 1)$ or $y = \frac{f(2) - f(1)}{2 - 1} x + c$ with an attempt to find c	Correct straight line method. It must be a <u>correct statement</u> using their $f(2)$ and $f(1)$. Can be implied by working below.	M1
	NB 'm' = 4.0	11105235	
	$y = 0 \Longrightarrow \alpha = \frac{f(2)}{f(1) - f(2)} + 2$ or $\alpha = \frac{f(1)}{f(1) - f(2)} + 1$	Correct follow through expression to find α .Method can be implied here. (Can be implied by awrt 1.61.)	A1√
	= 1.611726037	awrt 1.61	A1
			[3]

Question Number	Scheme	Notes	Marks
Aliter	$z + z^2 = z(1+z)$		
7. (b) Way 2	$= (2 - i\sqrt{3})(1 + (2 - i\sqrt{3}))$ = $(2 - i\sqrt{3})(3 - i\sqrt{3})$ = $6 - 2i\sqrt{3} - 3i\sqrt{3} + 3i^{2}$	An attempt to multiply out the brackets to give four terms (or four terms implied).	M1
	$= 6 - 2i\sqrt{3} - 3i\sqrt{3} - 3$	M1: An understanding that $i^2 = -1$ and an attempt to put in the form $a + bi\sqrt{3}$	M1
	$= 3 - 5i\sqrt{3}$ (Note: $a = 3, b = -5.$)	$3-5i\sqrt{3}$	A1
			[3]

Question Number	Scheme	Notes	Marks
<i>Aliter</i> 9. (b)	$\mathbf{M}: \begin{pmatrix} 2a-7\\a-1 \end{pmatrix} \to \begin{pmatrix} 25\\-14 \end{pmatrix}$		
Way 2	Therefore, $\begin{pmatrix} 3 & 4 \\ 2 & -5 \end{pmatrix} \begin{pmatrix} 2a - 7 \\ a - 1 \end{pmatrix} = \begin{pmatrix} 25 \\ -14 \end{pmatrix}$ or $\begin{pmatrix} 2a - 7 \\ a - 1 \end{pmatrix} = \begin{pmatrix} 3 & 4 \\ 2 & -5 \end{pmatrix}^{-1} \begin{pmatrix} 25 \\ -14 \end{pmatrix}$	Using the information in the question to form the matrix equation. Can be implied by any of the correct equations below.	M1
	$\binom{2a-7}{a-1} = \frac{1}{(-23)} \binom{-5 & -4}{-2} \binom{25}{-14} = \frac{1}{(-23)} \binom{-125+56}{-50-42}$		
	Either, $(2a - 7) = 3$ or $(a - 1) = 4$	Any one correct equation.	A1
	giving $a = 5$	<i>a</i> = 5	A1
			[3]

Question Number	Scheme	Notes	Marks
Aliter 9. (c)	Area ORS = $\frac{1}{2} \begin{vmatrix} 6 & 3 & 0 & 6 \\ 0 & 4 & 0 & 0 \end{vmatrix}$ = $\frac{1}{2} (6 \times 4 - 3 \times 0 + 0 - 0 + 0 - 0) $	Correct calculation	M1
Way 2 Determinant	= 12		A1
			[2]

Question Number	Scheme	Notes	Marks
<i>Aliter</i> 9. (d)	Area ORS = $\frac{1}{2} \begin{vmatrix} 18 & 25 & 0 & 18 \\ 12 & -14 & 0 & 12 \end{vmatrix}$ = $\frac{1}{2} (18 \times -14 - 12 \times 25 + 0 - 0 + 0 - 0) $	Correct calculation	M1
Way 2 Determinant	= 276		A1√
			[2]

Question Number	Scheme	Notes	Marks
Aliter	$\mathbf{M} = \mathbf{B}\mathbf{A}$	$\mathbf{M} = \mathbf{B}\mathbf{A}$, seen or implied.	M1
9. (f) Way 2	$\begin{pmatrix} 3 & 4 \\ 2 & -5 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 3 & 4 \\ 2 & -5 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix},$ with constants to be found.	A1
	$\begin{pmatrix} 3 & 4 \\ 2 & -5 \end{pmatrix} = \begin{pmatrix} b & -a \\ d & -c \end{pmatrix}$	$\begin{pmatrix} 3 & 4 \\ 2 & -5 \end{pmatrix} = \text{ their } \begin{pmatrix} b & -a \\ d & -c \end{pmatrix} \text{ with at}$ least two elements correct on RHS.	M1
	$\mathbf{B} = \begin{pmatrix} -4 & 3\\ 5 & 2 \end{pmatrix}$	Correct matrix for B of $\begin{pmatrix} -4 & 3 \\ 5 & 2 \end{pmatrix}$ or $a = -4$, $b = 3$, $c = 5$, $d = 2$	A1
			[4]

Question Number	Scheme	Notes	Marks
Aliter	$f(n) = 2^{2n-1} + 3^{2n-1}$ is divisible by 5.		
10. Way 2	$f(1) = 2^1 + 3^1 = 5$	Shows that $f(1) = 5$.	B1
	Assume that for $n = k$, $f(k) = 2^{2k-1} + 3^{2k-1}$ is divisible by 5 for		
	$k \in \phi^{+}$. f(k+1) = $2^{2(k+1)-1} + 3^{2(k+1)-1}$	M1: Attempts $f(k + 1)$. A1: Correct expression for $\underline{f(k + 1)}$ (Can be unsimplified)	M1A1
	$= 2^{2k+1} + 3^{2k+1}$ $= 4(2^{2k-1}) + 9(3^{2k-1})$	Achieves an expression in 2^{2k-1} and 3^{2k-1}	M1
	$f(k + 1) = 4(2^{2k-1} + 3^{2k-1}) + 5(3^{2k-1})$ or $f(k + 1) = 4f(k) + 5(3^{2k-1})$ or $f(k + 1) = 9f(k) - 5(2^{2k-1})$ or $f(k + 1) = 9(2^{2k-1} + 3^{2k-1}) - 5(2^{2k-1})$	Where $f(k + 1)$ is correct and is clearly a multiple of 5.	A1
	If the result is true for $n = k$, then it is now true for $n = k+1$. As the result has shown to be true for $n = 1$, then the result is true for all n .	Correct conclusion at the end , at least as given, and all previous marks scored.	A1 cso
			[6]

Question Number	Scheme	Notes	Marks
Aliter 10.	$f(n) = 2^{2n-1} + 3^{2n-1}$ is divisible by 5.		
Way 3	$f(1) = 2^1 + 3^1 = 5,$	Shows that $f(1) = 5$.	B1
	Assume that for $n = k$, $f(k) = 2^{2k-1} + 3^{2k-1}$ is divisible by 5 for $k \in \phi^+$.		
	$f(k+1) + f(k) = 2^{2(k+1)-1} + 3^{2(k+1)-1} + 2^{2k-1} + 3^{2k-1}$	M1: Attempts $f(k + 1) + f(k)$. A1: Correct expression for $\underline{f(k + 1)}$ (Can be unsimplified)	M1A1
	$= 2^{2k+1} + 3^{2k+1} + 2^{2k-1} + 3^{2k-1}$		
	$= 2^{2k-1+2} + 3^{2k-1+2} + 2^{2k-1} + 3^{2k-1}$		
	$= 4(2^{2k-1}) + 2^{2k-1} + 9(3^{2k-1}) + 3^{2k-1}$	Achieves an expression in 2^{2k-1} and 3^{2k-1}	M1
	$= 5(2^{2k-1}) + 10(3^{2k-1})$		
	$= 5(2^{2k-1}) + 5(3^{2k-1}) + 5(3^{2k-1})$		
	$= 5f(k) + 5(3^{2k-1})$		
	$\therefore f(k+1) = 4f(k) + 5(3^{2k-1}) \text{ or } $ $4(2^{2k-1} + 3^{2k-1}) + 5(3^{2k-1})$	Where $f(k + 1)$ is correct and is clearly a multiple of 5.	A1
	If the result is true for $n = k$, then it is now true for $n = k+1$. As the result has shown to be true for $n = 1$, then the result is true for all n .	Correct conclusion at the end , at least as given, and all previous marks scored.	A1 cso
			[6]
			6 marks

Question Number	Scheme	Notes	Marks
<i>Aliter</i> 10.	$f(n) = 2^{2n-1} + 3^{2n-1}$ is divisible by 5.		
Way 4	$f(1) = 2^1 + 3^1 = 5,$	Shows that $f(1) = 5$.	B1
	Assume that for $n = k$, $f(k) = 2^{2k-1} + 3^{2k-1}$ is divisible by 5 for $k \in \phi^+$.		
	f(k + 1) = f(k + 1) + f(k) - f(k)		
	$f(k+1) = 2^{2(k+1)-1} + 3^{2(k+1)-1} + 2^{2k-1} + 3^{2k-1} - (2^{2k-1} + 3^{2k-1})$	M1: Attempts f(k + 1) + f(k) - f(k) A1: Correct expression for $f(k + 1)$	M1A1
		(Can be unsimplified) Achieves an	
	$= 4(2^{2k-1}) + 9(3^{2k-1}) + 2^{2k-1} + 3^{2k-1} - (2^{2k-1} + 3^{2k-1})$	expression in 2^{2k-1} and 3^{2k-1}	M1
	$= 5(2^{2k-1}) + 10(3^{2k-1}) - (2^{2k-1} + 3^{2k-1})$		
	$=5\left(\left(2^{2^{k-1}}\right)+2\left(3^{2^{k-1}}\right)\right)-\left(2^{2^{k-1}}+3^{2^{k-1}}\right)$		
	$=5\left(\left(2^{2k-1}\right)+2\left(3^{2k-1}\right)\right)-f(k) \text{ or } 5\left(\left(2^{2k-1}\right)+2\left(3^{2k-1}\right)\right)-(2^{2k-1}+3^{2k-1})$	Where $f(k + 1)$ is correct and is clearly a multiple of 5.	A1
	If the result is true for $n = k$, then it is now true for $n = k+1$. As the result has shown to be true for $n = 1$, then the result is true for all <i>n</i> .	Correct conclusion at the end , at least as given, and all previous marks scored.	A1 cso
			[6
			6 marks

Mark Scheme (Results)

January 2013

GCE Further Pure Mathematics FP1 (6667/01)

Question Number	Scheme	Marks
1.	$\sum_{r=1}^{n} 3(4r^2 - 4r + 1) = 12\sum_{r=1}^{n} r^2 - 12\sum_{r=1}^{n} r + \sum_{r=1}^{n} 3$	M1
	$=\frac{12}{6}n(n+1)(2n+1)-\frac{12}{2}n(n+1), +3n$	A1, B1
	= n [2(n+1)(2n+1) - 6(n+1) + 3]	M1
	$= n \left[4n^2 - 1 \right] = n(2n+1)(2n-1)$	A1 cso
		[5]
Notes:	Induction is not acceptable here First M for expanding given expression to give a 3 term quadratic and attempt to substitute. First A for first two terms correct or equivalent.	
	B for $+3n$ appearing Second M for factorising by n	
	Final A for completely correct solution	

Jan 2013 Further Pure Mathematics FP1 6667 Mark Scheme

Question	Oshama	N 4 a sela a
Number	Scheme	Marks
2.	(a) $\frac{50}{3+4i} = \frac{50(3-4i)}{(3+4i)(3-4i)} = \frac{50(3-4i)}{25} = 6-8i$	M1 A1cao
	(b) $z^2 = (6-8i)^2 = 36-64-96i = -28-96i$	(2) M1 A1 (2)
	(c) $ z = \sqrt{6^2 + (-8)^2} = 10$	M1 A1ft (2)
	(d) $\tan \alpha = \frac{-96}{-28}$	M1
	so $\alpha = -106.3^{\circ}$ or 253.7°	A1cao (2) [8]
	Alternatives	
	(c) $ z = \frac{50}{ 3+4i } = 10$	M1 A1
	(d) arg (3+4i) = 53.13 so $\arg\left(\frac{50}{3+4i}\right)^2 = -2 \times 53.13 = -106.3$	M1 A1
Notes:		
	(a) M for $\times \frac{3-4i}{3-4i}$ (accept use of -3+4i) and attempt to expand using i ² =-1, A for 6-8i only	
	(b) M for attempting to expand their z^2 using i^2 =-1, A for -28-96i only. If using original z then must attempt to multiply top and bottom by conjugate and use i^2 =-1.	
	(c) M for $\sqrt{a^2 + b^2}$, A for 'their 10'	
	(d) M for use of tan or tan ⁻¹ and values from their z^2 either way up ignoring signs. Radians score A0.	

Question Number	Scheme	Marks	
3.	(a) $f'(x) = x^{-\frac{1}{2}} - \frac{1}{2}x^{-\frac{3}{2}}$	M1 A1	
			(2)
	(b) $f(5) = -0.0807$	B1	
	f'(5) = 0.4025	M1	
	$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 5 - \frac{-0.0807}{0.4025}$	M1	
	=5.2(0)	A1	
			(4) [6]
Notes	The B and M marks are implied by a correct answer only with no working or by $\frac{5}{9}(10\sqrt{5}-13)$ (a) M for at least one of $\pm ax^{-\frac{1}{2}}$ or $\pm bx^{-\frac{3}{2}}$, A for correct (equivalent) answer only (b) B for awrt -0.0807, first M for attempting their f'(5), M for correct formula and attempt to substitute, A for awrt 5.20, but accept 5.2		

		-
Question Number	Scheme	Marks
4.	$(a) \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ $(b) \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$	B1 (1) B1 (1)
	(c) $\mathbf{R} = \mathbf{Q}\mathbf{P}$	B1 (1)
	(d) $\mathbf{R} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$	M1 A1 cao (2) B1
	(e) Reflection in the <i>y</i> axis	B1 (2) [7]
Notes	(a) and (b) Signs must be clear for B marks.	
	(c) Accept \mathbf{QP} or their 2x2 matrices in the correct order only for B1.	
	(d) M for their QP where answer involves ± 1 and 0 in a 2x2 matrix, A for correct answer only.	
	(e) First B for Reflection, Second B for 'y axis' or ' $x=0$ '. Must be single transformation. Ignore any superfluous information.	

Question Number	Scheme	Marks
5.	(a) $4x^2+9=0 \implies x=ki$, $x=\pm\frac{3}{2}i$ or equivalent Solving 3-term quadratic by formula or completion of the square $x=\frac{6\pm\sqrt{36-136}}{2}$ or $(x-3)^2-9+34=0$ =3+5i and $3-5i(b)5-\frac{3+5i}{2}Two roots on imaginary axis\frac{3}{2}i-5-\frac{3-5i}{3-5i}$	M1, A1 M1 A1 A1ft (5) B1ft B1ft
		(2) [7]
Notes	(a) Final A follow through conjugate of their first root.(b) First B award only for first pair imaginary, Second B award only if second pair complex. Complex numbers labelled , scales or coordinates or vectors required for B marks.	

Ρ	Μ	Т

Question	Scheme	Marks
Number		
6.	(a) Determinant: $2 - 3a = 0$ and solve for $a =$	M1
	So $a = \frac{2}{3}$ or equivalent	A1 (2)
	(b) Determinant: $(1 \times 2) - (3 \times -1) = 5$ (Δ)	
	$\mathbf{Y}^{-1} = \frac{1}{5} \begin{pmatrix} 2 & 1 \\ -3 & 1 \end{pmatrix} \qquad \begin{bmatrix} = \begin{pmatrix} 0.4 & 0.2 \\ -0.6 & 0.2 \end{bmatrix} \end{bmatrix}$	M1A1 (2)
	(c) $\frac{1}{5} \begin{pmatrix} 2 & 1 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} 1-\lambda \\ 7\lambda-2 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 2-2\lambda+7\lambda-2 \\ -3+3\lambda+7\lambda-2 \end{pmatrix} = \begin{pmatrix} \lambda \\ 2\lambda-1 \end{pmatrix}$	M1depM1A1 A1 (4) [8]
	Alternative method for (c) $\begin{pmatrix} 1 & -1 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 - \lambda \\ 7\lambda - 2 \end{pmatrix}$ so $x - y = 1 - \lambda$ and $3x + 2y = 7\lambda - 2$	M1M1
	Solve to give $x = \lambda$ and $y = 2\lambda - 1$	A1A1
Notes	(b) M for $\frac{1}{\text{their det}} \begin{pmatrix} 2 & 1 \\ -3 & 1 \end{pmatrix}$	
	(c) First M for their $\mathbf{Y}^{-1}\mathbf{B}$ in correct order with B written as a 2x1 matrix, second M dependent on first for attempt at multiplying their matrices resulting in a 2x1 matrix, first A for λ , second A for $2\lambda - 1$	
	Alternative for (c) First M to obtain two linear equations in x, y, λ Second M for attempting to solve for x or y in terms of λ	

		1
Question Number	Scheme	Marks
7.	(a) $y = \frac{25}{x}$ so $\frac{dy}{dx} = -25x^{-2}$	M1
	$\frac{dy}{dx} = -\frac{25}{(5p)^2} = -\frac{1}{p^2}$	A1
	$y - \frac{5}{p} = -\frac{1}{p^2}(x - 5p) \implies p^2 y + x = 10p$ (*)	M1 A1 (4)
	(b) $q^2 y + x = 10q$ only	B1 (1)
	(c) $(p^2 - q^2)y = 10(p - q)$ so $y = \frac{10(p - q)}{(p^2 - q^2)} = \frac{10}{p + q}$	M1 A1cso
	$x = 10p - p^2 \frac{10}{p+q} = \frac{10pq}{p+q}$	M1 A1 cso (4)
	(d) Line PQ has gradient $\frac{\frac{5}{p} - \frac{5}{q}}{5p - 5q} \left(= -\frac{1}{pq} \right)$ $\frac{10}{pq} \left(= -\frac{1}{pq} \right)$	M1 A1
	<i>ON</i> has gradient $\frac{\overline{p+q}}{\frac{10pq}{p+q}} \left(= \frac{1}{pq} \right)$ or $\frac{-1}{\frac{-1}{pq}} (= pq)$ could be as unsimplified	B1
	equivalents seen anywhere	
	As these lines are perpendicular $\frac{1}{pq} \times -\frac{1}{pq} = -1$ so $p^2q^2 = 1$	
	OR for <i>ON</i> $y - y_1 = m(x - x_1)$ with gradient (equivalent to) pq and sub in points <i>O</i> AND <i>N</i> to give $p^2q^2 = 1$	
	OR for <i>PQ</i> $y - y_1 = m(x - x_1)$ with gradient (equivalent to) <i>-pq</i> and sub in points <i>P</i> AND <i>Q</i> to give $p^2q^2 = 1$. NB –pq used as gradient of <i>PQ</i> implies first M1A1	M1 A1
		(5) [14]

Question Number	Scheme	Marks
	Alternatives for first M1 A1 in part (a) $x \frac{dy}{dx} + y = 0 \Rightarrow \frac{dy}{dx} = -\frac{y}{x}$	M1
	So at P gradient = $\frac{-\frac{5}{p}}{5p} = -\frac{1}{p^2}$	A1
	Or $x = 5t$, $y = \frac{5}{t} \implies \frac{dx}{dt} = 5$, $\frac{dy}{dt} = -\frac{5}{t^2}$ so $\frac{dy}{dx} =$	M1
	$\frac{-\frac{5}{t^2}}{5} = -\frac{1}{t^2} \text{ so at } P \text{ gradient} = -\frac{1}{p^2}$	A1
Notes	(a) First M for attempt at explicit, implicit or parametric differentiation not using <i>p</i> or <i>q</i> as an initial parameter, first A for $\frac{-1}{p^2}$ or equivalent. Quoting gradient award first M0A0. Second M for using $y - y_1 = m(x - x_1)$ and attempt to substitute or $y = mx + c$ and attempt to find c; gradient in terms of <i>p</i> only and using $\left(5p, \frac{5}{p}\right)$, second A for correct solution only. (c) First M for eliminating <i>x</i> and reaching $y = f(p,q)$, second M for eliminating <i>y</i> and reaching $x = f(p,q)$, both As for given answers. Minimum amount of working given in the main scheme above for 4/4, but do not award accuracy if any errors are made. (d) First M for use of $\frac{y_2 - y_1}{x_2 - x_1}$ and substituting, first A for $\frac{-1}{pq}$ or unsimplified equivalent. Second M for their product of gradients=-1 (or equating equivalent gradients of <i>ON</i> or equating equivalent gradients of <i>PQ</i>), second A for correct answer only.	

Question Number	Scheme	Marks
8.	(a) If $n = 1$, $\sum_{r=1}^{n} r(r+3) = 1 \times 4 = 4$ and $\frac{1}{3}n(n+1)(n+5) = \frac{1}{3} \times 1 \times 2 \times 6 = 4$, (so true for $n = 1$. Assume true for $n = k$) So $\sum_{r=1}^{k+1} r(r+3) = \frac{1}{3}k(k+1)(k+5) + (k+1)(k+4)$ $= \frac{1}{3}(k+1)[k(k+5) + 3(k+4)] = \frac{1}{3}(k+1)[k^2 + 8k + 12]$	B1 M1 A1
	$= \frac{1}{3}(k+1)[k(k+3)+3(k+4)] = \frac{1}{3}(k+1)[k+6k+12]$ $= \frac{1}{3}(k+1)(k+2)(k+6)$ which implies is true for $n = k+1$ As result is true for $n = 1$ this implies true for all positive integers and so result is true by induction	dA1 dM1A1cso (6)
	(b) $u_1 = 1^2(1-1) + 1 = 1$ (so true for $n = 1$. Assume true for $n = k$) $u_{k+1} = k^2(k-1) + 1 + k(3k+1)$	B1
	$= k(k^{2} - k + 3k + 1) + 1 = k(k + 1)^{2} + 1$ which implies is true for $n = k + 1$ As result is true for $n = 1$ this implies true for all positive integers and as result is true by induction	M1, A1 M1A1cso
Notes	so result is true by induction (a) First B for LHS=4 and RHS =4	(5)
	First M for attempt to use $\sum_{1}^{k} r(r+3) + u_{k+1}$ First A for $\frac{1}{3}(k+1)$, $\frac{1}{3}(k+2)$ or $\frac{1}{3}(k+6)$ as a factor before the final line	
	Second A dependent on first for $\frac{1}{3}(k+1)(k+2)(k+6)$ with no errors seen Second M dependent on first M and for any 3 of 'true for $n=1$ ' 'assume true for $n=k$ ' 'true for $n=k+1$ ', 'true for all n' (or 'true for all positive integers') seen anywhere Third A for correct solution only with all statements and no errors	

(b) First B for both some working and 1.	
First M for $u_{k+1} = u_k + k(3k+1)$ and attempt to substitute for u_k	
First A for $k(k+1)^2 + 1$ with some correct intermediate working and no	
errors seen	
Second M dependent on first M and for any 3 of 'true for $n=1$ ' 'assume the	
for $n=k'$ 'true for $n=k+1'$, 'true for all n' (or 'true for all positive integers')	
seen anywhere	
Second A for correct solution only with all statements and no errors	

Question		
Number	Scheme	Marks
9.	(a) $y = 6x^{\frac{1}{2}}$ so $\frac{dy}{dx} = 3x^{-\frac{1}{2}}$	M1
	Gradient when $x = 4$ is $\frac{3}{2}$ and gradient of normal is $-\frac{2}{3}$	M1 A1
	So equation of normal is $(y-12) = -\frac{2}{3}(x-4)$ (or $3y+2x = 44$)	M1 A1
	(b) <i>S</i> is at point (9,0) <i>N</i> is at (22,0), found by substituting <i>y</i> =0 into their part (a) Both B marks can be implied or on diagram. So area is $\frac{1}{2} \times 12 \times (22-9) = 78$	(5) B1 B1ft M1 A1 cao (4) [9]
	Alternatives:	
	First M1 for $ky \frac{dy}{dx} = 36$ or for	
	$x = 9t^2, y = 18t \rightarrow \frac{dx}{dt} = 18t, \frac{dy}{dt} = 18 \rightarrow \frac{dy}{dx} = \frac{1}{t}$	
Notes	(a) First M for $\frac{dy}{dx} = ax^{-\frac{1}{2}}$, Second M for substituting $x=4$ (or $y=12$ or $t=2/3$ if alternative used) into their gradient and applying negative reciprocal. First A for $-\frac{2}{3}$ Third M for $y - y_1 = m(x - x_1)$ or $y = mx + c$ and attempt to substitute a changed gradient AND (4,12) Second A for $3y + 2x = 44$ or any equivalent equation (b) M for Area= $\frac{1}{2}$ base x height and attempt to substitute including their numerical '(22-9)' or equivalent complete method to find area of triangle <i>PSN</i> .	

Mark Scheme (Results)

Summer 2013

GCE Further Pure Mathematics 1 (6667/01R)

Question Number	Scheme	Ma	arks
1.	$z = 8 + 3\mathbf{i}, w = -2\mathbf{i}$		
(a)	z = 8 + 3i, w = -2i $z - w \{= (8 + 3i) - (-2i)\} = 8 + 5i$ 8 + 5i	B1	
			[1]
(b)	$zw \left\{= (8+3i)(-2i)\right\} = 6-16i$ Either the real or imaginary part is correct $6-16i$		
			[2] 3

Question Number	Scheme	Mar	ks
2.	$\mathbf{A} = \begin{pmatrix} 2k+1 & k \\ -3 & -5 \end{pmatrix}, \mathbf{B} = \mathbf{A} + 3\mathbf{I}$		
(i)(a)	$\mathbf{B} = \mathbf{A} + 3\mathbf{I} = \begin{pmatrix} 2k+1 & k \\ -3 & -5 \end{pmatrix} + 3 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ For applying $\mathbf{A} + 3\mathbf{I}$. Can be implied by three out of four correct elements in candidate's final answer. Solution must come from addition.	M1	
	$= \begin{pmatrix} 2k+4 & k \\ -3 & -2 \end{pmatrix}$ Correct answer.	A1	[2]
(b)	B is singular $\Rightarrow \det \mathbf{B} = 0.$		
	-2(2k+4) - (-3k) = 0 Applies " <i>ad</i> - <i>bc</i> " to B and equates to 0	M1	
	-4k-8+3k=0		
	k = -8 $k = -8$	A1cao	[2]
(ii)	$\mathbf{C} = \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix}, \mathbf{D} = \begin{pmatrix} 2 & -1 & 5 \end{pmatrix}, \mathbf{E} = \mathbf{C} \mathbf{D}$		
	$\begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \begin{pmatrix} 2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -15 \end{bmatrix}$ Candidate writes down a 3×3 matrix.	M1	
	$\mathbf{E} = \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix} \begin{pmatrix} 2 & -1 & 5 \end{pmatrix} = \begin{pmatrix} -6 & 3 & -15 \\ 8 & -4 & 20 \end{pmatrix}$ Correct answer.	A1	
			[2] 6

Question Number	Scheme		Marks
3.	$f(x) = \frac{1}{2}x^4 - x^3 + x - 3$		
(a)	f(2) = -1 f(2.5) = 3.40625	Either any one of $f(2) = -1$ or f(2.5) = awrt 3.4	M1
	Sign change (and $f(x)$ is continuous) therefore a root α exists between $x = 2$ and $x = 2.5$	both values correct, sign change and conclusion	A1 [2]
(b)	$f(2.25) = 0.673828125 \left\{ = \frac{345}{512} \right\} \ \left\{ \Rightarrow 2 \leqslant \alpha \leqslant 2.25 \right\}$	f (2.25) = awrt 0.7	B1
	f(2.125) = -0.2752685547	Attempt to find f (2.125) $f(2.125) = awrt - 0.3$ with	M1
	$\Rightarrow 2.125 \leqslant \alpha \leqslant 2.25$	2.125 $\leq \alpha \leq 2.25$ or 2.125 $< \alpha < 2.25$ or [2.125, 2.25] or (2.125, 2.25).	A1
(c)	$f'(x) = 2x^3 - 3x^2 + 1\{+0\}$	At least two of the four terms differentiated correctly. Correct derivative.	[3] M1 A1
	$f(-1.5) = 1.40625 \ \left(=1\frac{13}{32}\right)$ $\{f'(-1.5) = -12.5\}$	f(-1.5) = awrt 1.41	B1
	$\beta_2 = -1.5 - \left(\frac{"1.40625"}{"-12.5"}\right)$	Correct application of Newton-Raphson using their values.	M1
	$= -1.3875 \left(= -1\frac{31}{80}\right)$	-1.3875 seen as answer to first iteration, award M1A1B1M1	
	= -1.39 (2 dp)	-1.39	A1 cao [5] 10

(a) $(4x^{2}+9) = 0 \Rightarrow x = \frac{3i}{2}, -\frac{3i}{2}$ $(4x^{2}+9) = 0 \Rightarrow x = \frac{2\pm\sqrt{4-4(1)(5)}}{2(1)}$ $\Rightarrow x = \frac{2\pm\sqrt{-16}}{2}$ $\Rightarrow x = 1\pm 2i$ (b) $y \uparrow \qquad $		Marks
(a) $(4x^{2} + 9) = 0 \Rightarrow x = \frac{3i}{2}, -\frac{3i}{2}$ $(4x^{2} - 2x + 5) = 0 \Rightarrow x = \frac{2 \pm \sqrt{4 - 4(1)(5)}}{2(1)}$ $\Rightarrow x = \frac{2 \pm \sqrt{-16}}{2}$ $\Rightarrow x = 1 \pm 2i$ (b) $y \uparrow \qquad $		
(a) $(4x^{2} + 9) = 0 \Rightarrow x = \frac{3i}{2}, -\frac{3i}{2}$ $(4x^{2} - 2x + 5) = 0 \Rightarrow x = \frac{2 \pm \sqrt{4 - 4(1)(5)}}{2(1)}$ $\Rightarrow x = \frac{2 \pm \sqrt{-16}}{2}$ $\Rightarrow x = 1 \pm 2i$ (b) (b)		
(a) $(4x^2 + 9) = 0 \Rightarrow x = \frac{3i}{2}, -\frac{3i}{2}$ (4. $(x^2 - 2x + 5) = 0 \Rightarrow x = \frac{2 \pm \sqrt{4 - 4(1)(5)}}{2(1)}$ $\Rightarrow x = \frac{2 \pm \sqrt{-16}}{2}$ $\Rightarrow x = 1 \pm 2i$ (b) $y \uparrow $ compared to the set of th		
(a) $(4x^{2} + 9) = 0 \Rightarrow x = \frac{3}{2}, -\frac{3}{2}$ $(x^{2} - 2x + 5) = 0 \Rightarrow x = \frac{2 \pm \sqrt{4 - 4(1)(5)}}{2(1)}$ $\Rightarrow x = \frac{2 \pm \sqrt{-16}}{2}$ $\Rightarrow x = 1 \pm 2i$ (b) (b)	n attempt to solve	
$(x^{2} - 2x + 5) = 0 \Rightarrow x = \frac{2 \pm \sqrt{4 - 4(1)(5)}}{2(1)}$ $\Rightarrow x = \frac{2 \pm \sqrt{-16}}{2}$ $\Rightarrow x = 1 \pm 2i$ (b) (b) (c) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	$x^2 + 9) = 0$	M1
$(x^{2} - 2x + 5) = 0 \Rightarrow x = \frac{2 \pm \sqrt{4 - 4(1)(5)}}{2(1)}$ $\Rightarrow x = \frac{2 \pm \sqrt{-16}}{2}$ $\Rightarrow x = 1 \pm 2i$ (b) (b) (c) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	which	
(b) $\Rightarrow x = \frac{2 \pm \sqrt{-16}}{2}$ $\Rightarrow x = 1 \pm 2i$ (b) $y + c$ be be cc be cc sin	involves i.	
(b) $\Rightarrow x = \frac{2 \pm \sqrt{-16}}{2}$ $\Rightarrow x = 1 \pm 2i$ (b) $y + c$ be be cc be cc sin	$\frac{3i}{2}, -\frac{3i}{2}$	A1
(b) $\Rightarrow x = \frac{2 \pm \sqrt{-16}}{2}$ $\Rightarrow x = 1 \pm 2i$ (b) $y + e = e^{-2\pi i x}$ be $e = e^{-2\pi i x}$		
$\Rightarrow x = \frac{2 \pm \sqrt{-16}}{2}$ $\Rightarrow x = 1 \pm 2i$ (b) $y + \cdot$ be be cc be cc sin	Solves the 3TQ	M 1
(b) $x = 1 \pm 2i$ y + e 0 + x x x x x x x x		
(b) $x = 1 \pm 2i$ $y \uparrow $ co $y \uparrow $ be $0 \uparrow $ x x x x x x x x		
(b) $y + c c c c c c c c c c c c c c c c c c $		
(b) $y + c = c = c = c = c = c = c = c = c = c$		
y $column column col$	1 ± 2i	A1
y $column column col$		[4]
O x co sin	Any two of	
O x co sin	their roots	
o x t t t t t t t t t t t t t t t t t t	plotted prrectly on a	
O x co • sin	single	B1ft
O x co • co sin	diagram,	
	which have een found in	
• cc sin	part (a).	
• sin	Both sets of	
• sin	their roots plotted	
	orrectly on a	B1ft
	gle diagram	DIII
	with symmetry	
a	bout $y = 0$.	
		[2]
Method mark for solving 3 term quadratic:		6
1. Factorisation		
$(x^2 + bx + c) = (x + p)(x + q)$, where $ pq = c $, leading to x =		
$(ax^2 + bx + c) = (mx + p)(nx + q)$, where $ pq = c $ and $ mn = a $, leading to x =		
2. <u>Formula</u>		
Attempt to use <u>correct</u> formula (with values for a , b and c).		
3. <u>Completing the square</u>		
Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c$, $q \neq 0$, leading to $x =$		

Question Number	Scheme		Marks
Number 5. (a) (b)	Ignore part labels and mark part ($H: x = 3t, y = \frac{3}{t}, L: 6y = 4x - 15$ $H = L \implies 6\left(\frac{3}{t}\right) = 4(3t) - 15$ $\implies 18 = 12t^2 - 15t \implies 12t^2 - 15t - 18 = 0$ $\implies 4t^2 - 5t - 6 = 0 *$ $(t - 2)(4t + 3) \{= 0\}$ $\implies t = 2, -\frac{3}{4}$ When $t = 2$,	An attempt to substitute $x = 3t$ and $y = \frac{3}{t}$ into <i>L</i> Correct equation in <i>t</i> . Correct solution only, involving at least one intermediate step to given answer. A valid attempt at solving the quadratic. Both $t = 2$ and $t = -\frac{3}{4}$	M1 A1 A1 cso [3] M1 A1
	when $t = 2$, $x = 3(2) = 6, y = \frac{3}{2} \implies \left(6, \frac{3}{2}\right)$ When $t = -\frac{3}{4}$, $x = 3\left(-\frac{3}{4}\right) = -\frac{9}{4}, y = \frac{3}{\left(-\frac{3}{4}\right)} = -4 \implies \left(-\frac{9}{4}, -4\right)$	An attempt to use one of their <i>t</i>-values to find one of either <i>x</i> or <i>y</i>.One set of coordinates correct or both <i>x</i>-values are correct.Both sets of values correct.	M1 A1 A1 [5] 8
(b)	<u>Alt Method</u> : An attempt to eliminate either <i>x</i> or <i>y</i> from 1 st M1: A full method to obtain a quadratic equation in 1 st A1: For either $4x^2 - 15x - 54 = 0$ or $6y^2 + 15y$ 2^{nd} M1: A valid attempt at solving the quadratic. 2^{nd} A1: For either $x = 6, -\frac{9}{4}$ or $y = \frac{3}{2}, -4$ 3^{rd} A1: Both $\left(6, \frac{3}{2}\right)$ and $\left(-\frac{9}{4}, -4\right)$.	n either x or y.	

Question Number	Scheme	Mar	ks
6.	$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$		
(a)	$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$ $\mathbf{P} = \mathbf{A}\mathbf{B} \left\{ = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix} \right\} \qquad \qquad \mathbf{P} = \mathbf{A}\mathbf{B} \text{, seen or implied.}$	M1	
	$\mathbf{P} = \begin{pmatrix} 1 & 4 \\ -2 & -3 \end{pmatrix}$ Correct answer.	A1	[2]
(b)	det $\mathbf{P} = 1(-3) - (4)(-2) \{= -3 + 8 = 5\}$ Applies " <i>ad</i> - <i>bc</i> ".	M1	
	Area $(T) = \frac{24}{5}$ (units) ² $\frac{24}{\frac{5}{5}}$ or $\frac{4.8}{5}$		
(c)	$\mathbf{OP} = \mathbf{I} \implies \mathbf{OPP^{-1}} = \mathbf{IP^{-1}} \implies \mathbf{O} = \mathbf{P^{-1}}$		[3]
	$\mathbf{QP} = \mathbf{I} \Rightarrow \mathbf{QPP^{-1}} = \mathbf{IP^{-1}} \Rightarrow \mathbf{Q} = \mathbf{P^{-1}}$ $\mathbf{Q} = \mathbf{P^{-1}} = \frac{1}{5} \begin{pmatrix} -3 & -4 \\ 2 & 1 \end{pmatrix}$ $\mathbf{Q} = \mathbf{P^{-1}} \text{ stated or an attempt to find } \mathbf{P^{-1}}.$ Correct ft inverse matrix.	M1 A1ft	[2]
	Using BA , area is the same in (b) and inverse is $\frac{1}{5}\begin{pmatrix} 1 & -2 \\ 4 & -3 \end{pmatrix}$ in (c) and could gain ft marks.		7

Question Number	Scheme		Marks
7.	$y^2 = 4ax$, at $P(at^2, 2at)$.		
(a)	$y = 2\sqrt{a} x^{\frac{1}{2}} \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \sqrt{a} x^{-\frac{1}{2}}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm k \; x^{-\frac{1}{2}}$	
	or (implicitly) $2y \frac{dy}{dx} = 4a$	or $k y \frac{dy}{dx} = c$	M1
	or (chain rule) $\frac{dy}{dx} = 2a \times \frac{1}{2at}$	or $\frac{\text{their } \frac{dy}{dt}}{\text{their } \frac{dx}{dt}}$	
	When $x = at^2$, $\frac{dy}{dx} = \frac{\sqrt{a}}{\sqrt{at^2}} = \frac{\sqrt{a}}{\sqrt{at}} = \frac{1}{t}$ or $\frac{dy}{dx} = \frac{4a}{2(2at)} = \frac{1}{t}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{t}$	A1
	$\mathbf{T}: y - 2at = \frac{1}{t} \left(x - at^2 \right)$	Applies $y - 2at = \text{their } m_T (x - at^2)$ Their m_T must be a function of t from calculus.	M1
	$\mathbf{T}: ty - 2at^2 = x - at^2$		
	$\mathbf{T}: ty = x + at^2$	Correct solution.	A1 cso * [4]
(b)	At Q , $x = 0 \Rightarrow y = \frac{at^2}{t} = at \Rightarrow Q(0, at)$	y = at or $Q(0, at)$	B1 [1]
(c)	S(a,0)		
	$m(PQ) = \frac{at - 2at}{0 - at^2} = \frac{-at}{-at^2} = \frac{1}{t}$	A correct method for finding either $m(PQ)$ or $m(SQ)$ for their Q or S.	M1
	$m(SQ) = \frac{at-0}{0-a} = \frac{at}{-a} = -t$	$m(PQ) = \frac{1}{t}$ and $m(SQ) = -t$	A1
	$m(PQ) \times m(SQ) = \frac{1}{t} \times -t = -1 \implies PQ \perp SQ$	Shows $m(PQ) \times m(SQ) = -1$ and conclusion.	A1 cso [3] 8

Question Number	Scheme		Marks
	$\sum_{r=1}^{n} r(2r-1) = \frac{1}{6}n(n+1)(4n-1)$ $n=1;$ LHS = $\sum_{r=1}^{1} r(2r-1) = 1$ RHS = $\frac{1}{6}(1)(2)(3) = 1$ As LHS = RHS, the summation formula is true for $n = 1$. Assume that the summation formula is true for $n = k$. ie. $\sum_{r=1}^{k} r(2r-1) = \frac{1}{6}k(k+1)(4k-1)$.	$\frac{1}{6}(1)(2)(3) = 1$ seen	B1
	With $n = k+1$ terms the summation formula becomes: $\sum_{r=1}^{k+1} r(2r-1) = \frac{1}{6}k(k+1)(4k-1) + (k+1)(2(k+1)-1)$ $= \frac{1}{6}k(k+1)(4k-1) + (k+1)(2k+1)$	$S_{k+1} = S_k + u_{k+1}$ with $S_k = \frac{1}{6}k(k+1)(4k-1).$	M1
	$= \frac{1}{6}(k+1)(k(4k-1) + 6(2k+1))$	Factorise by $\frac{1}{6}(k+1)$	dM1
	$= \frac{1}{6}(k+1)(4k^2 + 11k + 6)$	$(4k^2 + 11k + 6)$ or equivalent quadratic seen	A1
	$= \frac{1}{6}(k+1)(k+2)(4k+3)$		
	$= \frac{1}{6}(k+1)(k+1+1)(4(k+1)-1)$	Correct completion to S_{k+1} in terms of $k+1$ dependent on both Ms.	dM1
	If the summation formula is <u>true for</u> $n = k$, then it is shown to be <u>true for</u> $n = k+1$. As the result is <u>true for</u> $n = 1$, it is now also <u>true for all</u> n and $n \in \mathbb{Z}^+$ by mathematical induction.	Conclusion with all 4 underlined elements that can be seen anywhere in the solution	A1 cso [6]

Question Number	Scheme		Marks
8. (b)	$\sum_{r=n+1}^{3n} r(2r-1) = S_{3n} - S_n$		
	$= \frac{1}{6} \cdot 3n(3n+1)(12n-1) - \frac{1}{6}n(n+1)(4n-1)$	Use of $S_{3n} - S_n$ or $S_{3n} - S_{n+1}$ with the result from (a) used at least once. Correct un-simplified expression.	M1 A1
	$= \frac{1}{6}n\left\{3(3n+1)(12n-1) - (n+1)(4n-1)\right\}$		
	$= \frac{1}{6}n\left\{3(36n^2 + 9n - 1) - (4n^2 + 3n - 1)\right\}$	Factorises out $\frac{1}{6}n$ or $\frac{1}{3}n$ and an attempt to open up the brackets.	dM1
	$=\frac{1}{6}n\left\{108n^2+27n-3-4n^2-3n+1\right\}$		
	$=\frac{1}{6}n\left\{104n^2+24n-2\right\}$		
	$= \frac{1}{3}n(52n^2 + 12n - 1)$	$= \frac{1}{3}n(52n^2 + 12n - 1)$	A1 [4]
	${a = 52, b = 12, c = -1}$		10

Question Number	Scheme		Marks
9.	w = 10 - 5i		
(a)	$ w = \left\{\sqrt{10^2 + (-5)^2}\right\} = \sqrt{125} \text{ or } 5\sqrt{5} \text{ or } 11.1803$	$\sqrt{125}$ or $5\sqrt{5}$ or <u>awrt 11.2</u>	B1
(b)	$\arg w = -\tan^{-1}\left(\frac{5}{10}\right)$	Use of tan ⁻¹ or tan	[1] M1
	= -0.463647609 = -0.46 (2 dp)	awrt -0.46 or awrt 5.82	A1 oe [2]
(c)	(2 + i)(z + 3i) = w $z + 3i = \frac{10 - 5i}{(2 + i)}$	Simplifies to give $* = \frac{\text{complex no.}}{(2 + i)}$	B1
	$z + 3i = \frac{(10 - 5i)}{(2 + i)} \times \frac{(2 - i)}{(2 - i)}$	Multiplies by $\frac{\text{their } (2-i)}{\text{their } (2-i)}$	M1
	$z + 3i = \frac{20 - 10i - 10i - 5}{1 + 4}$	Simplifies realising that a real number is needed on the denominator and applies $i^2 = -1$ on their numerator expression and denominator expression.	M1
	$z + 3i = \frac{15 - 20i}{5}$		
	z + 3i = 3 - 4i z = 3 - 7i (Note: $a = 3, b = -7.$)	z = 3 - 7i	A1 [4]
	$\arg(\lambda + 9i + w) = \frac{\pi}{4}$ $\lambda + 9i + w = \lambda + 9i + 10 - 5i = (\lambda + 10) + 4i$		
(d)	$\arg(\lambda + 9i + w) = \frac{\pi}{4} \Longrightarrow \lambda + 10 = 4$	Combines real and imaginary parts and puts "Real part = Imaginary part" i.e. $\frac{\lambda + 10}{4} = 1$ or $\frac{4}{\lambda + 10} = 1$ o.e. -6	M1
	So, $\lambda = -6$	-6	[2]
	Alt 1: Scheme as above:		9
(c)	$(2+i)z + 6i + 3i^2 = 10 - 5i \implies (2+i)z = 13 - 13$		
	B1 for $z = \frac{13 - 11i}{2 + i}$; M1 for $z = \frac{(13 - 11i)}{(2 + i)} \times \frac{(2 - 12i)}{(2 - 12i)}$	$\frac{1}{i}$; M1 for $z = \frac{20 - 15i - 22i - 11}{4 + 1}$;	
(c)	A1 for $z = 3 - 7i$ <u>Alt 2:</u> Let $z = a + ib$ gives $(2+i)(a+ib+3i) = 10 - 5i$ Equating real and imaginary parts to form two equations Solves simultaneous equations as far as $a = $ or $b = $ for M1 a=3, b=-7 or $z = 3 - 7i$ for A1	s both involving a and b for M1	

Question Number	Scheme		M	arks
10. (i)	$\sum_{r=1}^{24} (r^3 - 4r)$ = $\frac{1}{4} 24^2 (24 + 1)^2 - 4 \cdot \frac{1}{2} 24 (24 + 1)$ {= 90000 - 1200} = 88800	An attempt to use at least one of the standard formulae correctly and substitute 24. 88800	M1 A1	cao [2]
	$\sum_{r=0}^{n} \left(r^2 - 2r + 2n + 1 \right)$ = $\frac{1}{6} n(n+1)(2n+1) - 2 \cdot \frac{1}{2} n(n+1) + 2n(n+1) + (n+1)$ = $\frac{1}{6} (n+1) \left\{ 2n^2 + n - 6n + 12n + 6 \right\}$	An attempt to use at least one of the standard formulae correctly. <u>Correct underlined expression.</u> $2n \rightarrow 2n(n+1)$ $1 \rightarrow (n+1)$ An attempt to factorise out $\frac{1}{6}(n+1)$ or $\frac{1}{6}n$.	M1 A1 B1 B1 M1	
	$= \frac{1}{6}(n+1)\left\{2n^{2}+n-6n+12n+6\right\}$ $= \frac{1}{6}(n+1)\left\{2n^{2}+7n+6\right\}$ $= \frac{1}{6}(n+1)(n+2)(2n+3)$	Correct answer. (Note: $a = 2, b = 2, c = 3$.)	A1	[6] 8

Mark Scheme (Results)

Summer 2013

GCE Further Pure Mathematics 1 (6667/01)

Question Number	Scheme	Notes	Marks
1.	$\mathbf{M} = \begin{pmatrix} x & x-2 \\ 3x-6 & 4x-11 \end{pmatrix}$		
	$\det \mathbf{M} = x(4x - 11) - (3x - 6)(x - 2)$	Correct attempt at determinant	M1
	$x^2 + x - 12$ (=0)	Correct 3 term quadratic	A1
	$(x+4)(x-3) (=0) \rightarrow x =$	Their $3TQ = 0$ and attempts to solve relevant quadratic using factorisation or completing the square or correct quadratic formula leading to $x =$	M1
	x = -4, x = 3	Both values correct	A1
			(4
			Total 4
Notes			
	x(4x-11) = (3x-6)(x-2) award first M	1	
	$\pm(x^2 + x - 12)$ seen award first M1A1		
	Method mark for solving 3 term quadratic: 1. <u>Factorisation</u> $(x^2 + bx + c) = (x + p)(x + q)$, where $ pq = c $, leading to $x =$ $(ax^2 + bx + c) = (mx + p)(nx + q)$, where $ pq = c $ and $ mn = a $, leading to $x =$		
	2. <u>Formula</u> Attempt to use <u>correct</u> formula (with	values for a, b and c).	
	3. <u>Completing the square</u>		
	Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm dc$	$c, q \neq 0$, leading to x =	

PMT

Question Number	Scheme	Notes	Marks
2	$f(x) = \cos\left(x^2\right) - x + 3$		
(a)	f(2.5) = 1.499 f(3) = -0.9111	Either any one of $f(2.5) = awrt \ 1.5$ or $f(3) = awrt \ -0.91$	M1
	Sign change (positive, negative) (and $f(x)$ is continuous) therefore root or equivalent.	Both $f(2.5) = awrt 1.5$ and $f(3) = awrt -0.91$, sign change and conclusion.	A1
	Use of degrees gives $f(2.5) = 1.494$ and $f(3)$) = 0.988 which is awarded M1A0	(2)
(b)	$\frac{3-\alpha}{"0.91113026188"} = \frac{\alpha - 2.5}{"1.4994494182"}$	Correct linear interpolation method – accept equivalent equation - ensure signs are correct.	M1 A1ft
	$\alpha = \frac{3 \times 1.499 + 2.5 \times 0.9111}{1.499 + 0.9111}$		
	$\alpha = 2.81 (2d.p.)$	cao	A1
			(3)
			Total 5
Notes	Alternative (b)		
	Gradient of line is $-\frac{'1.499'+'0.9111'}{0.5}$ (= -4.82) (3sf). Attempt to find equation of		
	straight line and equate y to 0 award M1 and A1	ft for their gradient awrt 3sf.	

Question Number	Scheme	Notes	Marks
3 (a)	Ignore part labels and mark part (a) and part (b) together.		
	$f\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right)^{3} - 9\left(\frac{1}{2}\right)^{2} + k\left(\frac{1}{2}\right) - 13$	Attempts f(0.5)	M1
	$\left(\frac{1}{4}\right) - \left(\frac{9}{4}\right) + \left(\frac{k}{2}\right) - 13 = 0 \Longrightarrow k = \dots$	Sets $f(0.5) = 0$ and leading to $k=$	dM1
	k = 30	cao	A1
	Alternative using	long division:	
	$2x^3 - 9x^2 + kx - 13 \div (2x - 1)$		
	$=x^{2}-4x+\frac{1}{2}k-2$ (Quotient)	Full method to obtain a remainder as a function of k	M1
	Remainder $\frac{1}{2}k - 15$		
	$\frac{1}{2}k - 15 = 0$	Their remainder $= 0$	dM1
	k = 30		A1
	Alternative by	inspection:	
		First M for $(2x-1)(x^2+bx+c)$ or	
	$(2x-1)(x^2-4x+13) = 2x^3-9x^2+30x-13$	$(x-\frac{1}{2})(2x^2+bx+c)$	M1dM1
		Second M1 for $ax^2 + bx + c$ where ($b = -4$ or $c = 13$)or ($b = -8$ or $c = 26$)	
	k = 30		A1
			(3)
(b)	$f(x) = (2x-1)(x^2 - 4x + 13)$	M1: $(x^2 + bx \pm 13)$ or $(2x^2 + bx \pm 26)$ Uses inspection or long division or compares coefficients and $(2x - 1)$ or	M1
	$or\left(x-\frac{1}{2}\right)\left(2x^2-8x+26\right)$	$\left(x-\frac{1}{2}\right)$ to obtain a quadratic factor of this form.	
	$x^2 - 4x + 13$ or $2x^2 - 8x + 26$	A1 $(x^2 - 4x + 13)$ or $(2x^2 - 8x + 26)$ seen	A1
	$x = \frac{4 \pm \sqrt{4^2 - 4 \times 13}}{2}$ or equivalent	Use of correct quadratic formula for their <u>3TQ</u> or completes the square.	M1
	$x = \frac{4 \pm 6i}{2} = 2 \pm 3i$	oe	A1
			(4)
			Total 7

Question Number	Scheme	Notes	Marks
4(a)	$y = \frac{4}{x} = 4x^{-1} \implies \frac{dy}{dx} = -4x^{-2} = -\frac{4}{x^2}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = k \; x^{-2}$	
	$xy = 4 \Longrightarrow x \frac{\mathrm{d}y}{\mathrm{d}x} + y = 0$	Use of the product rule. The sum of two terms including dy/dx , one of which is correct.	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = -\frac{2}{t^2} \cdot \frac{1}{2}$	their $\frac{dy}{dt} \times \left(\frac{1}{\text{their}\frac{dx}{dt}}\right)$	
	$\frac{dy}{dx} = -4x^{-2} \text{ or } x \frac{dy}{dx} + y = 0 \text{ or } \frac{dy}{dx} = -\frac{2}{t^2} \cdot \frac{1}{2}$ or equivalent expressions	Correct derivative $-4x^{-2}$, $-\frac{y}{x}$ or $\frac{-1}{t^2}$	A1
	So, $m_N = t^2$	Perpendicular gradient rule $m_N m_T = -1$	M1
	$y - \frac{2}{t} = t^2 \left(x - 2t \right)$	$y - \frac{2}{t}$ = their $m_N (x - 2t)$ or $y = mx + c$ with their m_N and $(2t, \frac{2}{t})$ in an attempt to find 'c'. Their gradient of the normal must be different from their gradient of the tangent and have come from calculus and should be a function of t.	M1
	$ty - t^3 x = 2 - 2t^4 *$		A1* cso
			(5)
(b)	$t = -\frac{1}{2} \Longrightarrow -\frac{1}{2} y - \left(-\frac{1}{2}\right)^3 x = 2 - 2\left(-\frac{1}{2}\right)^4$	Substitutes the given value of <i>t</i> into the normal	M1
	4y - x + 15 = 0		
	$y = \frac{4}{x} \Longrightarrow x^2 - 15x - 16 = 0 \text{ or}$		
	$\left(2t,\frac{2}{t}\right) \rightarrow \frac{8}{t} - 2t + 15 = 0 \Longrightarrow 2t^2 - 15t - 8 = 0 \text{ or}$	Substitutes to give a quadratic	M1
	$x = \frac{4}{y} \Longrightarrow 4y^2 + 15y - 4 = 0.$		
	$(x+1)(x-16) = 0 \Longrightarrow x = \text{ or}$		
	$(2t+1)(t-8) = 0 \Longrightarrow t = \text{or}$	Solves their 3TQ	M1
	$(4y-1)(y+4) = 0 \Longrightarrow y =$		
	$(P: x = -1, y = -4)(Q:)x = 16, y = \frac{1}{4}$	Correct values for <i>x</i> and <i>y</i>	A1
			(4)
			Total 9

Question Number	Scheme	Notes	Marks
5(a)	$(r+2)(r+3) = r^2 + 5r + 6$		B1
	$\sum \left(r^2 + 5r + 6 \right) = \frac{1}{6} n \left(n + 1 \right) \left(2n + 1 \right) + 5 \times \frac{1}{2} n \left(n + 1 \right), +6n$	M1: Use of correct expressions for $\sum r^2$ and $\sum r$	M1,B1ft
		B1ft: $\sum k = nk$	
		M1:Factors out <i>n</i> ignoring treatment of constant.	
	$= \frac{1}{3}n\left[\frac{1}{2}(n+1)(2n+1) + \frac{15}{2}(n+1) + 18\right]$	A1: Correct expression with $\frac{1}{3}n$ or $\frac{1}{6}n$ factored out, allow recovery.	M1 A1
	$\left(= \frac{1}{3}n \left[n^2 + \frac{3}{2}n + \frac{1}{2} + \frac{15}{2}n + \frac{15}{2} + 18 \right] \right)$ $= \frac{1}{3}n \left[n^2 + 9n + 26 \right] *$	Correct completion to printed answer	A1*cso
			(6)
5(b)	$\sum_{r=n+1}^{3n} = \frac{1}{3}3n\left(\left(3n\right)^2 + 9\left(3n\right) + 26\right) - \frac{1}{3}n\left(n^2 + 9n + 26\right)$	M1: $f(3n) - f(n \text{ or } n+1)$ and attempt to use part (a). A1: Equivalent correct expression	M1A1
	3f(n) - f(n or n+1) is M0		
	$(=n(9n^{2}+27n+26)-\frac{1}{3}n(n^{2}+9n+26))$		
	$=\frac{2}{3}n\left(\frac{27}{2}n^2+\frac{81}{2}n+39-\frac{1}{2}n^2-\frac{9}{2}n-13\right)$	Factors out $=\frac{2}{3}n$ dependent on previous M1	dM1
	$=\frac{2}{3}n(13n^2+36n+26)$	Accept correct expression.	A1
	(a = 13, b = 36, c = 26)		
			(4)
			Total 10

Question Number	Scheme	Notes	Marks	
6(a)	$y = 2a^{\frac{1}{2}}x^{\frac{1}{2}} \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = a^{\frac{1}{2}}x^{-\frac{1}{2}}$	$x^{\frac{1}{2}} \rightarrow x^{-\frac{1}{2}}$	-	
	$y^2 = 4ax \Longrightarrow 2y\frac{dy}{dx} = 4a$	$ky\frac{\mathrm{d}y}{\mathrm{d}x} = c$	M1	
	or $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = 2a \cdot \frac{1}{2ap}$	$\frac{\mathrm{d}y}{\mathrm{d}t} \times \frac{1}{\frac{\mathrm{d}x}{\mathrm{d}t}}$. Can be a function of <i>p</i> or <i>t</i> .		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = a^{\frac{1}{2}}x^{-\frac{1}{2}} \text{ or } 2y\frac{\mathrm{d}y}{\mathrm{d}x} = 4a \text{ or } \frac{\mathrm{d}y}{\mathrm{d}x} = 2a.\frac{1}{2ap}$	Differentiation is accurate.	A1	
		Applies $y - 2ap = \text{their } m(x - ap^2)$		
		or $y = (\text{their } m)x + c$ using		
	$y - 2ap = \frac{1}{p}(x - ap^2)$	$x = ap^2$ and $y = 2ap$ in an attempt to find c. Their <i>m</i> must be a function of <i>p</i> from calculus.	M1	
	$py-x=ap^2 *$	Correct completion to printed answer*	A1 cso	
				(4)
(b)	$qy - x = aq^2$		B1	
				(1)
(c)	$qy - aq^2 = py - ap^2$	Attempt to obtain an equation in one variable <i>x</i> or <i>y</i>	M1	
	$y(q-p) = aq^{2} - ap^{2}$ $y = \frac{aq^{2} - ap^{2}}{q-p}$	Attempt to isolate <i>x</i> or <i>y</i>	M1	
	y = a(p+q) or ap + aq x = apq	A1: Either one correct simplified coordinate A1: Both correct simplified coordinates	A1,A1	
	(R(apq, ap + aq))			
(d)				(4)
	'apq' = -a	Their <i>x</i> coordinate of $R = -a$	M1	
	pq = -1	Answer only : Scores $2/2$ if <i>x</i> coordinate of <i>R</i> is <i>apq</i> otherwise $0/2$.	A1	
				(2)
			Total	11

Question Number	Scheme	Notes	Marks
7	$z_1 = 2 + 3i, z_2 = 3 + 2i$		
(a)	$z_1 + z_2 = 5 + 5i \implies z_1 + z_2 = \sqrt{5^2 + 5^2}$	Adds z_1 and z_2 and correct use of Pythagoras. i under square root award M0.	M1
	$\sqrt{50} \ (= 5\sqrt{2})$		A1 cao
			(2)
(b)	$\frac{z_1 z_3}{z_2} = \frac{(2+3i)(a+bi)}{3+2i}$	Substitutes for z_1, z_2 and z_3 and multiplies	
	$=\frac{(2+3i)(a+bi)(3-2i)}{(3+2i)(3-2i)}$	by $\frac{3-2i}{3-2i}$	M1
	(3+2i)(3-2i) = 13	13 seen.	B1
	$\frac{z_1 z_3}{z_2} = \frac{(12a - 5b) + (5a + 12b)i}{13}$	M1: Obtains a numerator with 2 real and 2 imaginary parts. A1: As stated or $\frac{(12a-5b)}{13} + \frac{(5a+12b)}{13}i$ ONLY.	dM1A1
			(4)
(c)	12a - 5b = 17 5a + 12b = -7	Compares real and imaginary parts to obtain 2 equations which both involve <i>a</i> and <i>b</i> . Condone sign errors only.	M1
	60a - 25b = 85 $60a + 144b = -84 \implies b = -1$ a = 1, b = -1	Solves as far as $a = \text{ or } b =$	dM1
	a = 1, b = -1	Both correct	A1
		Correct answers with no working award 3/3.	
			(3)
(d)	$\arg(w) = -\tan^{-1}\left(\frac{7}{17}\right)$	Accept use of $\pm \tan^{-1}$ or $\pm \tan$. awrt ± 0.391 or ± 5.89 implies M1.	M1
	=awrt - 0.391 or awrt 5.89		A1
		1	(2)
			Total 11

Question Number	Scheme	Notes	Marks
8(a)	$\mathbf{A}^{2} = \begin{pmatrix} 6 & -2 \\ -4 & 1 \end{pmatrix} \begin{pmatrix} 6 & -2 \\ -4 & 1 \end{pmatrix} = \begin{pmatrix} 44 & -14 \\ -28 & 9 \end{pmatrix}$	M1:Attempt both \mathbf{A}^2 and $7\mathbf{A} + 2\mathbf{I}$	M1A1
	$7\mathbf{A} + 2\mathbf{I} = \begin{pmatrix} 42 & -14 \\ -28 & 7 \end{pmatrix} + \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 44 & -14 \\ -28 & 9 \end{pmatrix}$	A1: Both matrices correct	MIAI
	$OR \mathbf{A}^2 - 7\mathbf{A} = \mathbf{A} (\mathbf{A} - 7\mathbf{I})$	M1 for expression and attempt to substitute and multiply (2x2)(2x2)=2x2	
	$\mathbf{A} \left(\mathbf{A} - 7\mathbf{I} \right) = \begin{pmatrix} 6 & -2 \\ -4 & 1 \end{pmatrix} \begin{pmatrix} -1 & -2 \\ -4 & -6 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = 2\mathbf{I}$	A1 cso	
			(2)
(b)	$\mathbf{A}^2 = 7\mathbf{A} + 2\mathbf{I} \Longrightarrow \mathbf{A} = 7\mathbf{I} + 2\mathbf{A}^{-1}$	Require one correct line using accurate expressions involving A^{-1} and identity matrix to be clearly stated as I.	M1
	$\mathbf{A}^{-1} = \frac{1}{2} (\mathbf{A} - 7\mathbf{I})^*$		A1* cso
	Numerical approach award 0/2.		
			(2)
(c)	$\mathbf{A}^{-1} = \frac{1}{2} \begin{pmatrix} -1 & -2 \\ -4 & -6 \end{pmatrix}$	Correct inverse matrix or equivalent	B1
	$\frac{1}{2} \begin{pmatrix} -1 & -2 \\ -4 & -6 \end{pmatrix} \begin{pmatrix} 2k+8 \\ -2k-5 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -2k-8+4k+10 \\ -8k-32+12k+30 \end{pmatrix}$	Matrix multiplication involving their inverse and k: (2x2)(2x1)=2x1. N.B. $\begin{pmatrix} 6 & -2 \\ -4 & 1 \end{pmatrix} \begin{pmatrix} 2k+8 \\ -2k-5 \end{pmatrix}$ is M0	M1
	$\binom{k+1}{2k-1} \text{ or } (k+1, 2k-1)$ Or:	(k+1) first A1, $(2k-1)$ second A1	A1,A1
	$ \begin{pmatrix} 6 & -2 \\ -4 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2k+8 \\ -2k-5 \end{pmatrix} $	Correct matrix equation.	B1
	6x - 2y = 2k + 8 -4x + y = -2k - 5 \Rightarrow x = or y =	Multiply out and attempt to solve simultaneous equations for x or y in terms of k .	M1
	$\binom{k+1}{2k-1} \text{ or } (k+1, 2k-1)$	(k+1) first A1, $(2k-1)$ second A1	A1,A1
			(4)
			Total 8

9(a) 	$u_{1} = 8 \text{ given}$ $n = 1 \Longrightarrow u_{1} = 4^{1} + 3(1) + 1 = 8 (\therefore \text{ true for } n = 1)$ Assume true for $n = k$ so that $u_{k} = 4^{k} + 3k + 1$ $u_{k+1} = 4(4^{k} + 3k + 1) - 9k$ $= 4^{k+1} + 12k + 4 - 9k = 4^{k+1} + 3k + 4$	$4^{1} + 3(1) + 1 = 8 \text{ seen}$ Substitute u_{k} into u_{k+1} as $u_{k+1} = 4u_{k} - 9k$ Expression of the form	B1 M1
-	$u_{k+1} = 4(4^k + 3k + 1) - 9k$	$u_{k+1} = 4u_k - 9k$	M1
-		$u_{k+1} = 4u_k - 9k$	M1
_	$= 4^{k+1} + 12k + 4 - 9k = 4^{k+1} + 3k + 4$	Expression of the form	
_		$4^{k+1} + ak + b$	A1
	$= 4^{k+1} + 3(k+1) + 1$	Correct completion to an expression in terms of $k + 1$	A1
	If <u>true for $n = k$ then true for $n = k + 1$ and as true for $n = 1$ true for all n</u>	Conclusion with all 4 underlined elements that can be seen anywhere in the solution; <i>n</i> defined incorrectly award A0.	A1 cso
(b)	Condone use of <i>n</i> here.		(5)
	$lhs = \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix}^{1} = \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix}$ $rhs = \begin{pmatrix} 2(1)+1 & -4(1) \\ 1 & 1-2(1) \end{pmatrix} = \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix}$ $(3 & -4)^{k} (2k+1 & -4k)$	Shows true for $m = 1$	B1
-	Assume $\begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix}^{k} = \begin{pmatrix} 2k+1 & -4k \\ k & 1-2k \end{pmatrix}$ $\begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix}^{k+1} = \begin{pmatrix} 2k+1 & -4k \\ k & 1-2k \end{pmatrix} \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix}$	$ \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 2k+1 & -4k \\ k & 1-2k \end{pmatrix} $ award M1	M1
	$= \begin{pmatrix} 6k+3-4k & -8k-4+4k \\ 3k+1-2k & -4k-1+2k \end{pmatrix}$ $= \begin{pmatrix} 2k+3 & -4k-4 \\ k+1 & -2k-1 \end{pmatrix}$	Or equivalent 2x2 matrix. $ \begin{pmatrix} 6k+3-4k & -12k-4+8k \\ 2k+1-k & -4k-1+2k \end{pmatrix} $ award A1from above.	A1
	$= \begin{pmatrix} 2(k+1)+1 & -4(k+1) \\ k+1 & 1-2(k+1) \end{pmatrix}$	Correct completion to a matrix in terms of $k + 1$	A1
	If <u>true for $m = k$</u> then <u>true for $m = k + 1$</u> and as <u>true</u> for $m = 1$ true for all m	Conclusion with all 4 underlined elements that can be seen anywhere in the solution; <i>m</i> defined incorrectly award A0.	A1 cso
			(5) Total 10

Mark Scheme (Results)

January 2014

Pearson Edexcel International Advanced Level

Further Pure Mathematics 1 (6667A/01)

PMT

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2014 Publications Code IA037751 All the material in this publication is copyright © Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^2 + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to x =

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to x =

2. <u>Formula</u>

Attempt to use <u>correct</u> formula (with values for a, b and c).

3. Completing the square

Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c$, $q \neq 0$, leading to x =...

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^n \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first. Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these <u>may</u> not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required.

Marks	Notes	Scheme	Question Number
		$f(x) = 2x - 5\cos x$, x measured in radians	1.
	Either any one of $f(1) = awrt - 0.7$ or	f(1) = -0.7015115293	(a)
M1	f(1.4) = 1.9 or awrt 2.0	f(1.4) = 1.950164285	
A1	both values correct, sign change and conclusion	Sign change (and $f(x)$ is continuous) therefore a root α exists between $x = 1$ and $x = 1.4$	
[2]			
B1	$f(1.2) = awrt \ 0.6$	$f(1.2) = 0.5882112276 \{ \Rightarrow 1 \le \alpha \le 1.2 \}$	(b)
M1	Attempt to find $f(1.1)$		
	f(1.1) = -0.06 or awrt -0.07 with	f(1.1) = -0.06798060713	
A1	$1.1 \le \alpha \le 1.2$ or $1.1 < \alpha < 1.2$	$\Rightarrow 1.1 \le \alpha \le 1.2$	
	or [1.1, 1.2] or (1.1, 1.2).		
[3] 5			

Question Number	Scheme	Notes	Mark	٢S
2.	$\mathbf{A} = \begin{pmatrix} -4 & 10 \\ -3 & k \end{pmatrix}, \text{ where } k \text{ is a constant}$			
(i)	$\det \mathbf{A} = (-4)(k) - (-3)(10)$	Applies " $ad \pm bc$ " to A	M1	
	$\Rightarrow -4k + 30 = 2$ or $-4k + 30 = -2$	Equates their det A to either 2 or -2	dM1	
	$\Rightarrow k = 7$ or $k = 8$	Either $k = 8$ or $k = 7$	A1	
	$\rightarrow k - 7$ or $k - 6$	Both $k = 8$ and $k = 7$	A1	
				[4]
(ii)	$\mathbf{B} = \begin{pmatrix} 1 & -2 & 3 \\ -2 & 5 & 1 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} 2 & 8 \\ 0 & 2 \\ 1 & -2 \end{pmatrix}$ $\mathbf{B} \mathbf{C} = \begin{pmatrix} 1 & -2 & 3 \\ -2 & 5 & 1 \end{pmatrix} \begin{pmatrix} 2 & 8 \\ 0 & 2 \\ 1 & -2 \end{pmatrix} = \begin{pmatrix} 5 & -2 \\ -3 & -8 \end{pmatrix}$ Wh			
	$(1, 2, 2)$ $\begin{pmatrix} 2 & 8 \end{pmatrix}$ $(5, 2)$ Wi	rites down a complete 2×2 matrix.	M1	
	$\mathbf{BC} = \begin{bmatrix} 1 & -2 & 3 \\ 2 & -7 & -1 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ -2 & -2 \end{bmatrix} = \begin{bmatrix} 5 & -2 \\ -2 & -2 \end{bmatrix}$	Any 3 out of 4 elements correct	A1	
	$\begin{pmatrix} -2 & 5 & 1 \end{pmatrix} \begin{pmatrix} 1 & -2 \end{pmatrix} \begin{pmatrix} -3 & -8 \end{pmatrix}$	Correct answer.	A1	
				[3] 7

Question Number	Scheme Notes	Marks
3.	$x = 2t, \ y = \frac{2}{t}, \ t \neq 0$ $t = \frac{1}{2} \Rightarrow P(1, 4), \ t = 4 \Rightarrow Q\left(8, \frac{1}{2}\right)$ Coordinates for either P or Q correctly stated. (Can be impli	
	$t = \frac{1}{2} \Rightarrow P(1, 4), t = 4 \Rightarrow Q\left(8, \frac{1}{2}\right)$ Coordinates for either <i>P</i> or <i>Q</i> correctly stated. (Can be implied to be a correctly stated) correctly stated.	
	$m(PQ) = \frac{\frac{1}{2} - 4}{8 - 1} \left\{ = -\frac{1}{2} \right\}$ An attempt to find the gradient of chord	N/L
	$m(L) = 2$ So, L: y = 2x $m(L) = \frac{-1}{\text{their } m(H)}$ $m(L) = \frac{-1}{\text{their } m(H)}$	\overline{PQ} M1
	So, $L: y = 2x$ $y =$	=2x A1 oe [4]
		4

Question Number	Scheme	Notes	Marks
4.	$f(x) = 2\sqrt{x} - \frac{6}{x^2} - 3, x > 0$		
	$f'(x) = x^{-\frac{1}{2}} + 12x^{-3} \{+0\}$ f (3.5) = 0.2518614684 {f'(3.5) = 0.8144058657}	$\pm \lambda x^{-\frac{1}{2}}$ or $\pm \mu x^{-3}$ Correct differentiation f (3.5) = awrt 0.25	M1 A1 B1
	$\beta = 3.5 - \left(\frac{"0.2518614684"}{"0.8144058657"}\right)$ = 3.190742075	Correct application of Newton-Raphson using their values.	M1
	= 3.191 (3 dp)	3.191	A1 cao [5] 5

January 2014 (IAL)

Question Number	Scheme	Notes	Ма	arks
5.	$z = 5 + i\sqrt{3}, w = \sqrt{3} - i$			
(a)	$ w = \left\{ \sqrt{\left(\sqrt{3}\right)^2 + (-1)^2} \right\} = 2$	2	B 1	
(b)	$zw = (5 + i\sqrt{3})(\sqrt{3} - i)$			[1]
	$= 5\sqrt{3} - 5i + 3i + \sqrt{3}$			
	$= 6\sqrt{3} - 2i$	Either the real or imaginary part is correct. $6\sqrt{3} - 2i$	M1 A1	
(c)	$\frac{z}{w} = \frac{\left(5 + i\sqrt{3}\right)}{\left(\sqrt{3} - i\right)} \times \frac{\left(\sqrt{3} + i\right)}{\left(\sqrt{3} + i\right)}$	Multiplies by $\frac{(\sqrt{3} + i)}{(\sqrt{3} + i)}$	M1	[2]
	$=\frac{5\sqrt{3}+5i+3i-\sqrt{3}}{3+1}$	Simplifies realising that a real number is needed on the denominator and applies $i^2 = -1$ on their numerator expression and denominator expression.	M1	
	$\left\{=\frac{4\sqrt{3}+8i}{4}\right\}=\sqrt{3}+2i$	$\sqrt{3}$ + 2i	A1	
(d)	$z + \lambda = 5 + i\sqrt{3} + \lambda = (5 + \lambda) + i\sqrt{3}$			[3]
	$\left\{ \arg(z+\lambda) = \frac{\pi}{3} \Longrightarrow \right\} \frac{\sqrt{3}}{5+\lambda} = \tan\left(\frac{\pi}{3}\right)$	$\frac{\sqrt{3}}{\text{their combined real part}} = \tan\left(\frac{\pi}{3}\right)$	M1	oe
	$\left\{\frac{\sqrt{3}}{5+\lambda} = \frac{\sqrt{3}}{1} \Longrightarrow 5 + \lambda = 1 \Longrightarrow\right\} \lambda = -4$	-4	A1	
	``````````````````````````````````````			[2] 8

Question Number	Scheme	Notes	Marks
<b>6.</b> (a)	$\sum_{r=1}^{n} r(r+1)(r-1) = \sum_{r=1}^{n} (r^{3} - r)$ $= \frac{1}{4}n^{2}(n+1)^{2} - \frac{1}{2}n(n+1)$ $= \frac{1}{4}n(n+1)(n(n+1) - 2)$ $= \frac{1}{4}n(n+1)(n^{2} + n - 2)$	An attempt to use at least one of the standard formulae correctly. Correct expression. An attempt to factorise out at least n(n + 1).	M1 A1 M1
(b)	$= \frac{1}{4}n(n+1)(n-1)(n+2)$ $\sum_{r=1}^{n} r(r+1)(r-1) = 10\sum_{r=1}^{n} r^{2}$ $\frac{1}{4}n(n+1)(n-1)(n+2) = \frac{10}{6}n(n+1)(2n+1)$	Achieves the correct answer. (Note: $a = 2$ ). Sets their part (a) = $\frac{10}{6}n(n+1)(2n+1)$	A1 [4] M1
	$\frac{1}{4}(n-1)(n+2) = \frac{5}{3}(2n+1)$ $3(n^2 + n - 2) = 20(2n+1)$ $3n^2 - 37n - 26 = 0$ (3n+2)(n-13) = 0 n = 13	Manipulates to a " $3TQ = 0$ ". $3n^2 - 37n - 26 = 0$ A valid method for factorising a 3TQ. Only one solution of $n = 13$	M1 A1 M1 A1 [5]
			9

B1; M1
M1
A1 [3]
M1
A1
A1
[3] 6
A

$y^2 = 4ax$ , at $P(a p^2, 2ap)$ .		
$y = 2\sqrt{a} x^{\frac{1}{2}} \implies \frac{dy}{dx} = \sqrt{a} x^{-\frac{1}{2}}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm k \; x^{-\frac{1}{2}}$	
or (implicitly) $2y \frac{dy}{dx} = 4a$	or $k y \frac{dy}{dx} = c$	M1
or (chain rule) $\frac{dy}{dx} = 2a \times \frac{1}{2ap}$	or $\frac{\text{their } \frac{dy}{dr}}{\text{their } \frac{dx}{dr}}$	
When $x = a p^2$ , $\frac{dy}{dx} = \frac{\sqrt{a}}{\sqrt{a p^2}} = \frac{\sqrt{a}}{\sqrt{a p}} = \frac{1}{p}$ or $\frac{dy}{dx} = \frac{4a}{2(2ap)} = \frac{1}{p}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{p}$	A1
So $m_N = -p$	Applies $m_N = \frac{-1}{their m_T}$	M1
<b>N</b> : $y - 2ap = -p(x - ap^2)$	Applies $y - 2ap = (\text{their } m_N)(x - ap^2)$	M1
$N:  y - 2ap = -px + ap^3$		
$N:  y + px = ap^3 + 2ap$	Correct solution.	A1 cso *
$(6a, 0) \Rightarrow 0 + p(6a) = ap^3 + 2ap$	Substitutes $x = 6a$ , $y = 0$ into <b>N</b>	M1
$\Rightarrow 4ap = ap^3 \Rightarrow p = 2$	p = 2	A1
$x = -a, p = 2 \implies y + 2(-a) = a(2)^3 + 2a(2)$	Substitutes $x = -a$ and their <i>p</i> into <b>N</b>	dM1
$\Rightarrow y = 8a + 4a + 2a = 14a \Rightarrow D(-a, 14a)$	D(-a, 14a)	A1
When $p = 2$ , $x = a(2)^2 = 4a$	Substitutes their <i>p</i> into $x = a p^2$	[4 M1
Area( <i>XPD</i> ) = $\frac{1}{(14a)(5a)} = 35a^2$	Applies $\frac{1}{2}$ (their 14 <i>a</i> )(their "4 <i>a</i> " + <i>a</i> )	M1
2 2 2	35 <i>a</i> ²	A1 [3 1
	or (chain rule) $\frac{dy}{dx} = 2a \times \frac{1}{2ap}$ When $x = a p^2$ , $\frac{dy}{dx} = \frac{\sqrt{a}}{\sqrt{a p^2}} = \frac{\sqrt{a}}{\sqrt{a p}} = \frac{1}{p}$ or $\frac{dy}{dx} = \frac{4a}{2(2ap)} = \frac{1}{p}$ So $m_N = -p$ N: $y - 2ap = -p(x - ap^2)$ N: $y - 2ap = -px + ap^3$ N: $y + px = ap^3 + 2ap$ $(6a, 0) \Rightarrow 0 + p(6a) = ap^3 + 2ap$ $\Rightarrow 4ap = ap^3 \Rightarrow p = 2$ $x = -a, p = 2 \Rightarrow y + 2(-a) = a(2)^3 + 2a(2)$ $\Rightarrow y = 8a + 4a + 2a = 14a \Rightarrow D(-a, 14a)$	or (chain rule) $\frac{dy}{dx} = 2a \times \frac{1}{2ap}$ When $x = ap^2$ , $\frac{dy}{dx} = \frac{\sqrt{a}}{\sqrt{ap^2}} = \frac{\sqrt{a}}{\sqrt{ap}} = \frac{1}{p}$ or $\frac{dy}{dx} = \frac{4a}{2(2ap)} = \frac{1}{p}$ So $m_N = -p$ N: $y - 2ap = -p(x - ap^2)$ N: $y - 2ap = -p(x - ap^2)$ N: $y - 2ap = -px + ap^3$ N: $y + px = ap^3 + 2ap$ $\Rightarrow 4ap = ap^3 \Rightarrow p = 2$ $x = -a, p = 2 \Rightarrow y + 2(-a) = a(2)^3 + 2a(2)$ $\Rightarrow y = 8a + 4a + 2a = 14a \Rightarrow D(-a, 14a)$ When $p = 2, x = a(2)^2 = 4a$ Area( $XPD$ ) $= \frac{1}{2}(14a)(5a) = 35a^2$ dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy dy

Question Number	Scheme	Notes	Mark	٨S
9.	(3-i)z * + 2iz = 9 - i			
	(3-i)(x-iy) + 2i(x+iy) = 9 - i	Substituting $z = x + iy$ and $z^* = x - iy$ into $(3 - i)z^* + 2iz = 9 - i$	M1	
	$\frac{3x - 3iy - ix - y}{2ix - 2y} = 9 - i$	Multiplies out $(3-i)(x-iy)$ correctly. This mark can be implied by correct later working.	A1	
	Re part: $3x - y - 2y = 9$	Equating either real or imaginary parts.	M1	
	Im part: $-3y - x + 2x = -1$	One set of correct equations.	A1	
		Correct equations.	A1	
	3x - 3y = 9			
	x - 3y = -1			
	$2x = 10 \implies x = 5$	Attempt to solve simultaneous equations to find one of x or y.	ddM1	
	$x - 3y = -1 \implies 5 - 3y = -1 \implies y = 2$	Either $x = 5$ or $y = 2$ .	A1	
		Both $x = 5$ and $y = 2$ .	A1	
	$\{z = 5 + 2i\}$			[8]
				8

Question			
Number	Scheme	Notes	Marks
<b>10.</b> (i)	$u_{n+1} = 5u_n + 3$ , $u_1 = 3$ and $u_n = \frac{3}{4}(5^n - 1)$ $n = 1;$ $u_1 = \frac{3}{4}(5^1 - 1) = \frac{3}{4}(4) = 3$ So $u_n$ is true when $n = 1$ .	Check that $u_n = \frac{3}{4}(5^n - 1)$ yields 3 when $n = 1$ .	B1
	Assume that for $n = k$ that, $u_k = \frac{3}{4}(5^k - 1)$ is true for $k \in \mathbb{Z}^+$ . Then $u_{k+1} = 5u_k + 3$		
	$=5\left(\frac{3}{4}(5^k-1)\right)+3$	Substituting $u_k = \frac{3}{4}(5^k - 1)$ into $u_{k+1} = 5u_k + 3$	M1
	$=\frac{3}{4}(5)^{k+1}-\frac{15}{4}+3$	An attempt to multiply out in order to achieve $\pm \lambda(5^{k+1}) \pm \text{constant}$	M1
	$= \frac{3}{4} (5)^{k+1} - \frac{3}{4}$ $= \frac{3}{4} (5^{k+1} - 1)$	$\frac{3}{4}(5^{k+1}-1)$	A1
	Therefore, the general statement, $u_n = \frac{3}{4}(5^n - 1)$ is true when $n = k+1$ . (As $u_n$ is true for $n = 1$ , ) then $u_n$ is true for all positive integers by mathematical induction	True when $n = k+1$ , then by induction the result is true for all positive integers.	A1
			[5]

Question Number	Scheme	Notes	Marks
	$f(n) = 5(5^n) - 4n - 5$ is divisible by 16		
<b>10.</b> (ii)	$f(1) = 5(5^1) - 4(1) - 5 = 16,$	Shows that $f(1) = 16$	B1
	{which is divisible by 16}.		
	$\{ :: f(n) \text{ is divisible by 16 when } n = 1. \}$		
	Assume that for $n = k$ ,		
	$f(k) = 5(5^k) - 4k - 5$ is divisible by 16 for $k \in \mathbb{Z}^+$ .		
		Applies $f(k+1) - f(k)$ .	M1
	$f(k+1) - f(k) = 5(5^{k+1}) - 4(k+1) - 5 - (5(5^k) - 4k - 5)$	Correct expression for $f(k+1) - f(k)$ .	A1
	$= 5(5^{k+1}) - 4k - 4 - 5 - 5(5^k) + 4k + 5$		
	$= 25(5^{k}) - 4k - 4 - 5 - 5(5^{k}) + 4k + 5$	Achieves an expression in $5^k$ .	M1
	$=20(5^k)-4$		
	$= 4(5(5^k) - 4k - 5) + 16k + 20 - 4$		
	$= 4(5(5^k) - 4k - 5) + 16k + 16$		
	=4f(k)+16(k+1)		
	$\therefore f(k+1) = 5f(k) + 16(k+1)$	f(k+1) = 5f(k) + 16(k+1)	A1
	$\{ : f(k+1) = 5f(k) + 16(k+1), \text{ which is divisible by 16 as } \}$		
	both $5f(k)$ and $16(k+1)$ are both divisible by 16.}		
	If the result is true for $n = k$ , then it is now true for		
	n = k+1. As the result has shown to be true for $n = 1$ ,	Correct conclusion	A1 cso
	then the result is true for all <i>n</i> .		
			[6]
			11

## Appendix

- dM1 denotes a method mark which is dependent upon the award of the previous method mark.
- ddM1 denotes a method mark which is dependent upon the award of the previous two method marks.
- ft denotes "follow through"
- cao denotes "correct answer only"
- oe denotes "or equivalent"

#### **Other Possible Solutions**

Question Number	Scheme	Notes	Mar	ks
7.	$\mathbf{P} = \begin{pmatrix} 3a & -2a \\ -b & 2b \end{pmatrix},  \mathbf{M} = \begin{pmatrix} -6a & 7a \\ 2b & -b \end{pmatrix}$			
	$\mathbf{M} = \mathbf{P}\mathbf{Q}$			
(b)	$ \begin{pmatrix} -6a & 7a \\ 2b & -b \end{pmatrix} = \begin{pmatrix} 3a & -2a \\ -b & 2b \end{pmatrix} \begin{pmatrix} q_1 & q_2 \\ q_3 & q_4 \end{pmatrix} $			
Way 2	$\begin{pmatrix} -6a & 7a \\ 2b & -b \end{pmatrix} = \begin{pmatrix} 3a & -2a \\ -b & 2b \end{pmatrix} \begin{pmatrix} q_1 & q_2 \\ q_3 & q_4 \end{pmatrix}$ -6 = 3q_1 - 2q_3 7 = 3q_2 - 2q_4 Writes d 2 = -q_1 + 2q_3 ' -1 = -q_2 + 2q_4 = \begin{pmatrix} -2 & 3 \\ 0 & 1 \end{pmatrix}	own a relevant pair of simultaneous equations. Can be implied by later working. Two out of four elements correct. Correct matrix.	M1 A1 A1	[3]

Question Number	Scheme	Notes	Marks
Aliter	$f(n) = 5(5^n) - 4n - 5$ is divisible by 16		
10. (ii)	$f(1) = 5(5^1) - 4(1) - 5 = 16,$	Shows that $f(1) = 16$	B1
Way 2	{which is divisible by 16}. { $\therefore$ f (n) is divisible by 16 when $n = 1$ .} Assume that for $n = k$ ,		
	$f(k) = 5(5^k) - 4k - 5$ is divisible by 16 for $k \in \mathbb{Z}^+$ .		
	$f(k+1) = 5(5^{k+1}) - 4(k+1) - 5$	Applies $f(k+1)$ .	M1
	1(k+1) = 3(3) - 4(k+1) - 3	Correct expression for $f(k+1)$ .	A1
	$=25(5^k)-4k-9$	Achieves an expression in $5^k$ .	M1
	$=5(5(5^k)-4k-5)+20k+25-4k-9$		
	$= 5(5(5^k) - 4k - 5) + 16(k + 1)$		
	∴ $f(k+1) = 5f(k) + 16(k+1)$	f(k+1) = 5f(k) + 16(k+1)	A1
	$\{: f(k+1) = 5f(k) + 16(k+1), \text{ which is divisible by } 16$		
	as both $5f(k)$ and $16(k+1)$ are both divisible by 16.}		
	If the result is true for $n = k$ , then it is now true for		
	n = k+1. As the result has shown to be true for $n = 1$ ,	Correct conclusion	A1 cso
	then the result is true for all <i>n</i> .		[6]

January 2014 (IAL)

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE  $\,$ 





# Mark Scheme (Results)

# Summer 2014

Pearson Edexcel GCE in Further Pure Mathematics FP1 (6667/01)

#### **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

#### Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

Summer 2014 Publications Code UA038867 All the material in this publication is copyright © Pearson Education Ltd 2014

# General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

# EDEXCEL GCE MATHEMATICS

# **General Instructions for Marking**

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol  $\sqrt{}$  will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
  - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
  - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

# **General Principles for Further Pure Mathematics Marking**

(But note that specific mark schemes may sometimes override these general principles).

## Method mark for solving 3 term quadratic:

## 1. Factorisation

$$(x^{2}+bx+c) = (x+p)(x+q)$$
, where  $|pq| = |c|$ , leading to x = ...

 $(ax^2 + bx + c) = (mx + p)(nx + q)$ , where |pq| = |c| and |mn| = |a|, leading to  $x = \dots$ 

# 2. Formula

Attempt to use the correct formula (with values for a, b and c).

## 3. Completing the square

Solving  $x^2 + bx + c = 0$ :  $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$ ,  $q \neq 0$ , leading to  $x = \dots$ 

## Method marks for differentiation and integration:

### 1. Differentiation

Power of at least one term decreased by 1.  $(x^n \rightarrow x^{n-1})$ 

### 2. Integration

Power of at least one term increased by 1.  $(x^n \rightarrow x^{n+1})$ 

## Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

#### Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number	Scheme	Notes	Marks
<b>1.</b> (a)	$\frac{z_1}{z_2} = \frac{p+2i}{1-2i} \cdot \frac{1+2i}{1+2i}$	Multiplying top and bottom by conjugate	M1
	$=\frac{p+2pi+2i-4}{5}$	At least 3 correct terms in the numerator, evidence that $i^2 = -1$ and denominator real.	M1
	$=\frac{p-4}{5}, +\frac{2p+2}{5}i$	Real + imaginary with i factored out. Accept single denominator with numerator in correct form. Accept 'a= ' and 'b='.	A1, A1
			(4)
(b)	$\left \frac{z_1}{z_2}\right ^2 = \left(\frac{p-4}{5}\right)^2 + \left(\frac{2p+2}{5}\right)^2.$	Accept their answers to part (a). Any erroneous i or $i^2$ award M0	M1
	$\left(\frac{p-4}{5}\right)^{2} + \left(\frac{2p+2}{5}\right)^{2} = 13^{2}$ or $\sqrt{\left(\frac{p-4}{5}\right)^{2} + \left(\frac{2p+2}{5}\right)^{2}} = 13$	$\left \frac{z_1}{z_2}\right ^2 = 13^2$ or $\left \frac{z_1}{z_2}\right  = 13$	dM1
	$\frac{p^2 - 8p + 16}{25} + \frac{4p^2 + 8p + 4}{25} = 169 \text{ or } 13^2$		
	$5p^2 + 20 = 4225$		
	$p^2 = 841 \Longrightarrow p = \pm 29$	dM1:Attempt to solve their quadratic in <i>p</i> , dependent on both previous Ms. A1: <b>both</b> 29 <b>and</b> -29	dM1A1
	OR		
	$\frac{\left z_{1}\right }{\left z_{2}\right } = \frac{\sqrt{p^{2}+4}}{\sqrt{5}}$	Finding moduli Any erroneous i or $i^2$ award M0	M1
	$\frac{\sqrt{p^2+4}}{\sqrt{5}} = 13 \text{ oe}$	Equating to 13	dM1
	$\frac{p^2+4}{5} = 169 \text{ or } 13^2 \text{ oe}$		
	$p^2 = 841 \Longrightarrow p = \pm 29$	dM1:Attempt to solve their quadratic in <i>p</i> , dependent on both previous Ms	dM1A1
		A1:both 29 and -29	(4)
			(4) Total 8

Question Number	Scheme	Notes	Marks
2.	$f(x) = x^3 - \frac{5}{2x^{\frac{3}{2}}} + \frac{5}{2x^{\frac{3}{2$	2x - 3	
(a)	f(1.1) = -1.6359604, f(1.5) = 2.0141723	Attempts to evaluate both $f(1.1)$ and $f(1.5)$ and evaluates at least one of them correctly to awrt (or trunc.) 2 sf.	M1
	Sign change (and $f(x)$ is continuous) therefore a root / $\alpha$ is between $x = 1.1$ and $x = 1.5$	Both values correct to awrt (or trunc.) 2 sf, sign change (or a statement which implies this e.g. $-1.63 < 0 < 2.014$ ) and conclusion.	A1
			(2)
	$f(x) = x^{3} - \frac{5}{2}x^{-\frac{3}{2}} + 2x - 3$	M1: $x^n \to x^{n-1}$ for at least one term	- M1A1
(b)	$\Rightarrow$ f'(x) = 3x ² + $\frac{15}{4}x^{\frac{-5}{2}} + 2$	A1:Correct derivative oe	
			(2)
(c)	$f'(1.1) = 3(1.1)^{2} + \frac{15}{4}(1.1)^{-\frac{5}{2}} + 2(=8.585)$	Attempt to find $f'(1.1)$ . Accept $f'(1.1)$ seen and their value.	M1
	$\alpha_2 = 1.1 - \left(\frac{"-1.6359604"}{"8.585"}\right)$	Correct application of N-R	M1
	$\alpha_2 = 1.291$	cao	A1
			(3)
			Total 7

June 2014

Question Number	Scheme	Notes	Marks
3.	$x^3 + px^2 + 30.$	x + q = 0	
(a)	1+5 <i>i</i>		B1
(b)	$((x-(1+5i))(x-(1-5i))) = x^2 - 2x + 26$ $((x-2)(x-(1\pm5i))) = x^2 - (3\pm5i)x + 2(1\pm5i))$	<ul> <li>±5i)</li> <li>M1: 1. Attempt to expand or 2. Use sum and product of the complex roots.</li> <li>A1: Correct expression</li> </ul>	(1) M1A1
	$(x^2 - 2x + 26)(x - 2) = x^3 + px^2 + 30x + qx^2$	Uses their third factor with	M1
	$p = -4, \qquad q = -52$	May be seen in cubic	A1, A1
OR	f(1+5i)=0 or f(1-5i)=0	Substitute one complex root to achieve 2 equations in $p$ and / or q	M1
	q - 24p - 44 = 0 and $10p + 40 = 0$	Both equations correct oe	A1
		Solving for $p$ and $q$	M1
	p = -4, q = -52	May be seen in cubic	A1, A1
			(5)
(c)	5 — 1+5i	B1: Conjugate pair correctly positioned and labelled with 1+5i, 1-5i or (1,5),(1,-5) or axes labelled 1 and 5.	B1
	-5 - $1 - 5i$	B1: The 2 correctly positioned relative to conjugate pair and labelled.	B1
			(2) Total 8

PMT

June 2014

Question			M 1
Number	Scheme	Notes	Marks
4.	$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & -1 \\ 4 & 5 \end{pmatrix}, \mathbf{B} =$	$= \begin{pmatrix} 2 & -1 & 4 \\ 1 & 3 & 1 \end{pmatrix}$	
(i)(a)	$ \begin{pmatrix} 1 & 2 \\ 3 & -1 \\ 4 & 5 \end{pmatrix} \begin{pmatrix} 2 & -1 & 4 \\ 1 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 5 & 6 \\ 5 & -6 & 11 \\ 13 & 11 & 21 \end{pmatrix} $	M1: 3x3 matrix with a number or numerical expression for each element A2:cao (-1 each error) Only 1 error award A1A0	M1A2
(b)	$\mathbf{BA} = \begin{pmatrix} 2 & -1 & 4 \\ 1 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & -1 \\ 4 & 5 \end{pmatrix} = \begin{pmatrix} 15 & 25 \\ 14 & 4 \end{pmatrix}$	<ul> <li>Allow any convincing argument.</li> <li>E.g.s BA is a 2x2 matrix (so</li> <li>AB ≠ BA) or dimensionally</li> <li>different. Attempt to evaluate</li> <li>product not required.</li> <li>NB 'Not commutative' only is B0</li> </ul>	B1
			(4)
(ii)	$(\det \mathbf{C} =)2k \times k - 3 \times (-2)$	Correct attempt at determinant	M1
	$\mathbf{C}^{-1} = \frac{1}{2k^2 + 6} \begin{pmatrix} k & 2 \\ -3 & 2k \end{pmatrix}$	M1: $\frac{1}{\text{their det } \mathbf{C}} \begin{pmatrix} k & 2 \\ -3 & 2k \end{pmatrix}$ A1:cao oe	M1A1
			(3)
			Total 7

Question Number	Scheme	Notes	Marks
<b>5.</b> (a)	$((2r-1)^2 =)4r^2 - 4r + 1$		B1
	Proof by induction will usually score no mo results	re marks without use of standard	
	$\sum_{r=1}^{n} (2r-1)^{2} = \sum_{r=1}^{n} (4r^{2} - 4r + 1)$		
	$=4\sum r^2 - 4\sum r + \sum 1$		
	$= \underline{4.\frac{1}{6}n(n+1)(2n+1) - 4.\frac{1}{2}n(n+1), +n}$	M1: An attempt to use at least one of the standard results correctly in summing at least 2 terms of their expansion of $(2r-1)^2$ A1: Correct underlined expression oe B1: $\sum 1 = n$	M1A1B1
	$=\frac{1}{3}n\Big[4n^2+6n+2-6n-6+3\Big]$	Attempt to factor out $\frac{1}{3}n$ before given answer	M1
	$=\frac{1}{3}n\left[4n^2-1\right]$	cso	A1
			(6)
(b)	$\sum_{r=2n+1}^{4n} (2r-1)^2 = f(4n) - f(2n) \text{ or } f(2n+1)$	Require some use of the result in part (a) for method.	M1
	$\sum_{r=2n+1}^{n} (2r-1)^2 = f(4n) - f(2n) \text{ or } f(2n+1)$ $= \frac{1}{3} 4n \left( 4 \cdot (4n)^2 - 1 \right) - \frac{1}{3} \cdot 2n \left( 4 \cdot (2n)^2 - 1 \right)$	Correct expression	A1
	$=\frac{2}{3}n\left[128n^2 - 2 - 16n^2 + 1\right]$		
	$=\frac{2}{3}n\left[112n^2-1\right]$	Accept $a = \frac{2}{3}, b = 112$	A1
			(3)
			Total 9

June 2014

Question Number	Scheme	Notes	Marks
6.	$xy = c^2$ at $(ct, \frac{c}{t})$ .		
(a)	$y = \frac{c^2}{x} = c^2 x^{-1} \implies \frac{dy}{dx} = -c^2 x^{-2} = -\frac{c^2}{x^2}$ $xy = c^2 \implies x \frac{dy}{dx} + y = 0$ $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = -\frac{c}{t^2} \cdot \frac{1}{c}$	$\frac{dy}{dx} = k x^{-2}$ Correct use of product rule. The sum of two terms, one of which is correct <b>and</b> rhs = 0 their $\frac{dy}{dt} \times \left(\frac{1}{\text{their } \frac{dx}{dt}}\right)$	M1
	$\frac{dy}{dx} = -c^2 x^{-2} \text{ or } x \frac{dy}{dx} + y = 0 \text{ or } \frac{dy}{dx} = \frac{-c}{t^2} \cdot \frac{1}{c}$ or equivalent expressions	Correct differentiation	A1
	$y - \frac{c}{t} = -\frac{1}{t^2}(x - ct)$ (×t ² )	$y - \frac{c}{t} = \text{their } m_T \left( x - c t \right) \text{ or}$ $y = mx + c \text{ with their } m_T \text{ and } (ct, \frac{c}{t}) \text{ in}$ an attempt to find 'c'. Their $m_T$ must have come from calculus and should be a function of t or c or both c and t.	dM1
	$t^{2}y + x = 2ct$ (Allow $x + t^{2}y = 2ct$ )	Correct solution only.	A1*
			(4)
	(a) Candidates who derive $x + t^2 y = 2ct$	l	
	justification score <u>n</u>		
<b>(b</b> )	$y = 0 \implies x = \frac{ct^4 - c}{t^3} \implies A\left(\frac{ct^4 - c}{t^3}, 0\right)$	$\frac{ct^{2}-c}{t^{3}}$ or equivalent form	B1
	$y = 0 \implies x = 2ct \implies B(2ct, 0).$	2 <i>c t</i>	B1
			(2)
(c)	AB = "2ct"-" $\frac{ct^4 - c}{t^3}$ " or PA= $ct^{-3}\sqrt{t^4 + 1}$ and PB= $ct^{-1}\sqrt{t^4 + 1}$	Attempt to subtract their <i>x</i> -coordinates either way around.	M1
	and PB= $ct^{-1}\sqrt{t^4 + 1}$ Area APB = $\frac{1}{2} \times their AB \times \frac{c}{t}$	Valid complete method for the area of the triangle in terms of $t$ or $c$ and $t$ .	M1
	$= \frac{1}{2} \left( 2ct - \frac{ct^4 - c}{t^3} \right) \frac{c}{t} = \frac{c^2 \left( t^4 + 1 \right)}{2t^4}$		
	$=8\left(1+\frac{1}{t^{4}}\right) \operatorname{or} \frac{8\left(t^{4}+1\right)}{t^{4}} \operatorname{or} \frac{8t^{4}+8}{t^{4}} \operatorname{or} 8+\frac{8}{t^{4}}$	Use of $c = 4$ and completes to one of the given forms oe simplest form. Final answer should be positive for A mark.	A1
			(3)
			Total 9

Question Number	Scheme	Notes	Marks
7.(i)(a)	$\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$		B1
(b)	$ \begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} $		B1
(c)	$ \begin{bmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} $	M1: Multiplies their (b) x their (a) in the correct order	M1A1
	$\begin{pmatrix} \sqrt{2} & \sqrt{2} \end{pmatrix}$ $\begin{pmatrix} \sqrt{2} & \sqrt{2} \end{pmatrix}$	Correct matrix seen M1A1	
			(4)
( <b>ii</b> )	Area triangle T = $\frac{1}{2} \times (11 - 3) \times k = 4k$	M1: Correct method for area for <i>T</i>	M1A1
(11)		A1: 4k	
	$dot \begin{pmatrix} 6 & -2 \\ -6 \times 2 & 1 \times (-2)(-14) \end{pmatrix}$	M1: Correct method for determinant	M 1 A 1
	$\det \begin{pmatrix} 6 & -2 \\ 1 & 2 \end{pmatrix} = 6 \times 2 - 1 \times (-2)(=14)$	A1: 14	M1A1
	Area triangle $T = \frac{364}{"14"} (= 26) \Longrightarrow 4k = 26$	Uses 364 and their determinant correctly to form an equation in <i>k</i> .	M1
	$k = \frac{26}{4} \left( = \frac{13}{2} \right)$	Accept $k = \pm \frac{13}{2}$ or $k = -\frac{13}{2}$	A1
			(6)
1			Total 10

Question Number	Scheme	Notes	Marks
<b>8.</b> (a)	$m = \frac{4k - 8k}{k^2 - 4k^2} \left(=\frac{4}{3k}\right)$	Valid attempt to find gradient in terms of $k$	M1
	$y - 8k = \frac{4}{3k} (x - 4k^2) \text{ or}$ $y - 4k = \frac{4}{3k} (x - k^2) \text{ or}$ $y = \frac{4}{3k} x + \frac{8k}{3}$	M1: Correct straight line method with their gradient in terms of k. If using $y = mx + c$ then award M provided they attempt to find c A1: Correct equation. If using $y = mx + c$ , awardwhen they obtain $c = \frac{8k}{3}$ oe	MIA1
	$3ky - 24k^{2} = 4x - 16k^{2} \Longrightarrow 3ky - 4x = 8k^{2} *$ or $3ky - 12k^{2} = 4x - 4k^{2} \Longrightarrow 3ky - 4x = 8k^{2} *$	Correct completion to printed answer with at least one intermediate step.	A1*
			(4)
<b>(b</b> )	(Focus) (4, 0)	Seen or implied as a number	B1
	(Directrix) $x = -4$	Seen or implied as a number	B1
	Gradient of $l_2$ is $-\frac{3k}{4}$	Attempt negative reciprocal of grad $l_1$ as a function of $k$	M1
	$y-0=\frac{-3k}{4}(x-4)$	Use of their changed gradient and numerical Focus in either formula, as printed oe	M1, A1
	$x = -4 \Longrightarrow y = \frac{-3k}{4}(-4-4)$	Substitute numerical directrix into their line	M1
	( <i>y</i> =)6 <i>k</i>	oe	A1
			(7)
			Total 11

$f(n) = S^n + S^n$ is different for the second sec		
$f(n) = 8^n - 2^n \text{ is divisible by 6.}$		
$f(1) = 8^1 - 2^1 = 6,$	Shows that $f(1) = 6$	B1
Assume that for $n = k$ ,		
$f(k) = 8^k - 2^k$ is divisible by 6.		
$f(k+1) - f(k) = 8^{k+1} - 2^{k+1} - \left(8^k - 2^k\right)$	Attempt $f(k + 1) - f(k)$	M1
$=8^{k}(8-1)+2^{k}(1-2)=7\times8^{k}-2^{k}$		
$= 6 \times 8^{k} + 8^{k} - 2^{k} \left(= 6 \times 8^{k} + f(k)\right)$	M1: Attempt $f(k + 1) - f(k)$ as a multiple of 6 A1: rhs a correct multiple of 6	M1A1
$\mathbf{f}(k+1) = 6 \times 8^k + 2\mathbf{f}(k)$	Completes to $f(k + 1) = a$ multiple of 6	A1
		Alcso
	Do not award final A if <i>n</i> defined incorrctly e.g. ' <i>n</i> is an integer' award A0	
		(6
	Shows that $f(1) = 6$	Total 6
	Shows that $I(1) = 0$	B1
$f(k+1) = 8^{k+1} - 2^{k+1} = 8\left(8^k - 2^k + 2^k\right) - 2.2^k$	Attempts $f(k + 1)$ in terms of $2^k$ and $8^k$	M1
$f(k+1) = 8^{k+1} - 2^{k+1} = 8(f(k) + 2^k) - 2.2^k$	M1:Attempts $f(k + 1)$ in terms of $f(k)$ A1: rhs correct and a multiple of 6	M1A1
$f(k+1) = 8f(k) + 6.2^k$	Completes to $f(k + 1) = a$ multiple of 6	A1
If the result is <b>true for</b> $n = k$ , then it is now <b>true for</b> $n = k+1$ . As the result has		
been shown to be true for $n = 1$ , then the result is true for all $n (\in \square^+)$ .		A1cso
$f(1) = 8^1 - 2^1 = 6,$	Shows that $f(1) = 6$	B1
Assume that for $n = k$ ,		
$f(k) = 8^k - 2^k \text{ is divisible by 6.}$		
$f(k+1) - 8f(k) = 8^{k+1} - 2^{k+1} - 8 \cdot 8^k + 8 \cdot 2^k$	Attempt $f(k + 1) - 8f(k)$	M1
	Any multiple <i>m</i> replacing 8 award	
$f(k+1) - 8f(k) = 8^{k+1} - 8^{k+1} + 8 \cdot 2^k - 2 \cdot 2^k = 6 \cdot 2^k$	M1: Attempt $f(k+1) - f(k)$ as a multiple of 6	M1A1
$f(k+1) = 8f(k) + 6.2^k$	Completes to $f(k + 1) = a$ multiple of 6	A1
	General Form for multiple <i>m</i>	
If the result is <b>true for</b> $n = k$ , then it is now <b>true for</b> $n = k+1$ . As the result has been shown to be <b>true for</b> $n = 1$ , then the result is <b>true for all</b> $n (\in \square^+.)$		
	Assume that for $n = k$ , $f(k) = 8^{k} - 2^{k}$ is divisible by 6. $f(k+1) - f(k) = 8^{k+1} - 2^{k+1} - (8^{k} - 2^{k})$ $= 8^{k}(8-1) + 2^{k}(1-2) = 7 \times 8^{k} - 2^{k}$ $= 6 \times 8^{k} + 8^{k} - 2^{k} (= 6 \times 8^{k} + f(k))$ $f(k+1) = 6 \times 8^{k} + 2f(k)$ If the result is <b>true for</b> $n = k$ , then it is now <b>tr</b> been shown to be <b>true for</b> $n = 1$ , then the result $f(1) = 8^{1} - 2^{1} = 6$ , Assume that for $n = k$ , $f(k) = 8^{k} - 2^{k}$ is divisible by 6. $f(k+1) = 8^{k+1} - 2^{k+1} = 8(8^{k} - 2^{k} + 2^{k}) - 2.2^{k}$ $f(k+1) = 8^{k+1} - 2^{k+1} = 8(f(k) + 2^{k}) - 2.2^{k}$ $f(k+1) = 8f(k) + 6.2^{k}$ If the result is <b>true for</b> $n = k$ , then it is now <b>tr</b> been shown to be <b>true for</b> $n = 1$ , then the result $f(1) = 8^{1} - 2^{1} = 6$ , Assume that for $n = k$ , $f(k) = 8^{k} - 2^{k}$ is divisible by 6. $f(k+1) - 8f(k) = 8^{k+1} - 2^{k+1} - 8.8^{k} + 8.2^{k}$ $f(k+1) - 8f(k) = 8^{k+1} - 2^{k+1} - 8.8^{k} + 8.2^{k} = 6.2^{k}$ $f(k+1) = 8f(k) + 6.2^{k}$	Assume that for $n = k$ , $f(k) = 8^k - 2^k$ is divisible by 6. $f(k+1) - f(k) = 8^{k+1} - 2^{k+1} - (8^k - 2^k)$ Attempt $f(k+1) - f(k)$ $= 8^k (8-1) + 2^k (1-2) = 7 \times 8^k - 2^k$ $= 6 \times 8^k + 8^k - 2^k (= 6 \times 8^k + f(k))$ $f(k+1) = 6 \times 8^k + 2f(k)$ M1: Attempt $f(k+1) - f(k)$ as a multiple of 6 $f(k+1) = 6 \times 8^k + 2f(k)$ Completes to $f(k+1) = a$ multiple of 6 If the result is <b>true for</b> $n = k$ , then it is now <b>true for</b> $n = k+1$ . As the result has been shown to be <b>true for</b> $n = 1$ , then the result is <b>true for all</b> $n (\in \square^+)$ Do not award final A if $n$ defined incorrectly e.g. 'n is an integer' award A0 $f(1) = 8^l - 2^l = 6$ , Shows that $f(1) = 6$ Assume that for $n = k$ , $f(k) = 8^k - 2^k$ is divisible by 6. $f(k+1) = 8^{k+1} - 2^{k+1} = 8(8^k - 2^k + 2^k) - 2.2^k$ Attempts $f(k+1)$ in terms of $2^k$ and $8^k$ $f(k+1) = 8^{k+1} - 2^{k+1} = 8(f(k) + 2^k) - 2.2^k$ M1:Attempts $f(k+1)$ in terms of $f(k)$ . At the result is <b>true for</b> $n = k$ , then it is now <b>true for</b> $n = k+1$ . As the result has been shown to be <b>true for</b> $n = 1$ , then the result is <b>true for all</b> $n (\in \square^+)$ .) $f(1) = 8^l - 2^l = 6$ , Shows that $f(1) = 6$ Assume that for $n = k$ , then it is now <b>true for</b> $n = k+1$ . As the result has been shown to be <b>true for</b> $n = 1$ , then the result is <b>true for all</b> $n (\in \square^+)$ .) $f(1) = 8^l - 2^l = 6$ , Shows that $f(1) = 6$ Assume that for $n = k$ , then it is now <b>true for all</b> $n (\in \square^+)$ .) $f(1) = 8^l - 2^l = 6$ , Shows that $f(1) = 6$ Assume that for $n = k$ , then it is now <b>true for all</b> $n (\in \square^+)$ .) $f(k+1) - 8f(k) = 8^{k+1} - 2^{k+1} + 8.2^k - 2.2^k = 6.2^k$ $f(k+1) - 8f(k) = 8^{k+1} - 2^{k+1} + 8.2^k - 2.2^k = 6.2^k$ $f(k+1) - 8f(k) = 8^{k+1} - 8^{k+1} + 8.2^k - 2.2^k = 6.2^k$ $f(k+1) = 6.8^k + (2-m)(8^k - 2^k)$

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE



# Mark Scheme (Results)

# Summer 2014

Pearson Edexcel GCE in Further Pure Mathematics FP1R (6667/01R)

### **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

#### Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

Summer 2014 Publications Code UA03870 All the material in this publication is copyright © Pearson Education Ltd 2014

## **General Marking Guidance**

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

# EDEXCEL GCE MATHEMATICS

# **General Instructions for Marking**

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol  $\sqrt{1}$  will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
  - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
  - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

# **General Principles for Further Pure Mathematics Marking**

(But note that specific mark schemes may sometimes override these general principles).

## Method mark for solving 3 term quadratic:

## 1. Factorisation

$$(x^{2} + bx + c) = (x + p)(x + q)$$
, where  $|pq| = |c|$ , leading to x = ...

 $(ax^2 + bx + c) = (mx + p)(nx + q)$ , where |pq| = |c| and |mn| = |a|, leading to  $x = \dots$ 

# 2. Formula

Attempt to use the correct formula (with values for a, b and c).

## 3. Completing the square

Solving  $x^2 + bx + c = 0$ :  $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$ ,  $q \neq 0$ , leading to  $x = \dots$ 

# Method marks for differentiation and integration:

### 1. Differentiation

Power of at least one term decreased by 1.  $(x^n \rightarrow x^{n-1})$ 

### 2. Integration

Power of at least one term increased by 1.  $(x^n \rightarrow x^{n+1})$ 

## Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

#### Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

June 2014 (R)

Question Number	Scheme		Marks
1.	f(z) = 2z	$3^{3}-3z^{2}+8z+5$	
	1-2i (is also a root)	seen	B1
	$(z - (1 + 2i))(z - (1 - 2i)) = z^2 - 2z + 5$	Attempt to expand (z - (1 + 2i))(z - (1 - 2i)) or any valid method to establish the quadratic factor e.g. $z = 1 \pm 2i \Rightarrow z - 1 = \pm 2i \Rightarrow z^2 - 2z + 1 = -4$ $z = 1 \pm \sqrt{-4} = \frac{2 \pm \sqrt{-16}}{2} \Rightarrow b = -2, c = 5$ Sum of roots 2, product of roots 5 $\therefore z^2 - 2z + 5$	M1A1
	$f(z) = (z^2 - 2z + 5)(2z + 1)$	Attempt at <b>linear</b> factor with their <i>cd</i> in $(z^2 + az + c)(2z + d) = \pm 5$ Or $(z^2 - 2z + 5)(2z + a) \Rightarrow 5a = 5$	M1
	$\left(z_3\right) = -\frac{1}{2}$		A1
ļ			(5)
			Total 5

Question Number	Scheme		Marks	
2.	$f(x) = 3\cos 2x + x - 2$			
(a)	f(2) = -1.9609 f(3) = 3.8805	Attempts to evaluate both $f(2)$ and $f(3)$ and evaluates at least one of them correctly to awrt (or trunc.) 2 sf.	M1	
	Sign change (and $f(x)$ is continuous) therefore a root $\alpha$ is between $x = 2$ and $x = 3$	Both values correct to awrt (or trunc.) 2 sf, sign change (or a statement which implies this e.g. $-1.96 < 0 < 3.88$ ) and conclusion.	A1	
			(2)	
(b)	$\frac{\alpha - 2}{"1.9609"} = \frac{3 - \alpha}{"3.8805"}$	Correct linear interpolation method. It must be a <u>correct</u> <u>statement</u> using their $f(2)$ and $f(3)$ . Can be implied by working below.	M1	
	If any "negative lengths" are	e used, score M0		
	$(3.88+1.96)\alpha = 3 \times 1.96 + 2 \times 3.88$			
	$\alpha_2 = \frac{3 \times 1.96 + 2 \times 3.88}{1.96 + 3.88}$	Follow through their values if seen explicitly.	A1ft	
	$\alpha_2 = 2.336$	cao	A1	
			(3)	
(c)	f(0) = +(1) <b>or</b> f(-1) = -(4.248)	Award for correct sign, can be in a table.	B1	
	f(-0.5) (= -0.879)	Attempt f(-0.5)	M1	
	f(-0.25) (= 0.382)	Attempt <b>f</b> (- <b>0.25</b> )	M1	
	$\therefore -0.5 < \beta < -0.25$	oe with no numerical errors seen	A1	
			(4)	
			Total 9	

Question Number	Scheme		Marks
<b>3.(i)(a)</b>	Rotation of 45 degrees anticlockwise, about the origin	B1: Rotation about (0, 0)B1: 45 degrees (anticlockwise)-45 or clockwise award B0	B1B1
			(2)
(b)	$\begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}$	Correct matrix	B1
			(1)
(ii)	$\frac{224}{16}(=14)$	Correct area scale factor. Allow ±14	B1
	$\det \mathbf{M} = 3 \times 3 - k \times -2 = 14$	Attempt determinant and set equal to their area scale factor	M1
		Accept det $\mathbf{M} = 3 \times 3 \pm 2k$ only	
	k = 2.5	oe	A1
			(3)
			Total 6

Question Number	Scheme		Marks
<b>4.</b> (a)	$z = \frac{p+2i}{3+pi} \cdot \frac{3-pi}{3-pi}$	Multiplying top and bottom by Conjugate	M1
	$=\frac{3p - p^{2}i + 6i + 2p}{9 + p^{2}}$	At least 3 correct terms in the numerator, evidence that $i^2 = -1$ and denominator real.	M1
	$=\frac{5p}{p^2+9},$ $+\frac{6-p^2}{p^2+9}i$	Real + imaginary with i factored out. Accept single denominator with numerator in correct form. Accept 'a= ' and 'b='.	A1, A1
(b)	$\arg(z) = \arctan\left(\frac{\frac{6-p^2}{p^2+9}}{\frac{5p}{p^2+9}}\right)$ $\frac{6-p^2}{5p} = 1$ $p^2 + 5p - 6 = 0$	Correct method for the argument. Can be implied by correct equation for $p$	(4) M1
	$\frac{6-p^2}{5p} = 1$	Their $\arg(z)$ in terms of $p = 1$	M1
	$p^2 + 5p - 6 = 0$	Correct 3TQ	A1
	$(p+6)(p-1) = 0 \Longrightarrow x =$	M1:Attempt to solve their quadratic in <i>p</i>	M1
	p = 1, p = -6	A1:both	A1
			(5) Total 9
(a) Way 2	$a+b\mathbf{i} = \frac{p+2\mathbf{i}}{3+p\mathbf{i}}$	Equate to $a + bi$ then rearrange and equate real and imaginary parts.	M1
	3a - pb = p, ap + 3b = 2	Two equations for $a$ and $b$ in terms of $p$ and attempt to solve for $a$ and b in terms of $p$	dM1
	$=\frac{5p}{p^2+9},$ $+\frac{6-p^2}{p^2+9}i$	Real + imaginary with i factored out. Accept single denominator with numerator in correct form. Accept 'a= ' and 'b='.	A1, A1 (5)

June 2014 (R)

Question Number	Scheme		Marks
5.(a)	$r(r^2-3)=r^3-3r$	$r^3-3r$	B1
	$r(r^{2}-3) = r^{3} - 3r$ $\sum_{r=1}^{n} r(r^{2}-3) = \sum_{r=1}^{n} r^{3} - 3\sum_{r=1}^{n} r$		
	$=\frac{1}{4}n^{2}(n+1)^{2}-\frac{3}{2}n(n+1)$	M1: An attempt to use at least one of the standard formulae correctly. A1: Correct expression	M1A1
	$=\frac{1}{4}n(n+1)(n(n+1)-6)$	Attempt factor of $\frac{1}{4}n(n+1)$ before given answer	M1
	$=\frac{1}{4}n(n+1)(n^{2}+n-6)$		
	$= \frac{1}{4}n(n+1)(n^{2}+n-6)$ $= \frac{1}{4}n(n+1)(n+3)(n-2)$	cso	A1
			(5)
(b)	$\sum_{r=10}^{50} r(r^2 - 3) = f(50) - f(9or 10)$	Require some use of the result in part (a) for method.	M1
	$\sum_{r=10}^{50} r(r^2 - 3) = f(50) - f(9 \text{ or } 10)$ $= \frac{1}{4} (50) (51) (53) (48) - \frac{1}{4} (9) (10) (12) (7)$	Correct expression	A1
	= 1621800 - 1890		
	= 1619910	cao	A1
			(3)
			Total 8

Question Number	Scheme		Marks
6.(a)	$\mathbf{A} + \mathbf{B} = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}$	M1:Correct attempt at matrix addition with 3 elements correct A1: Correct matrix	M1A1
	$\mathbf{2A} \cdot \mathbf{B} = \begin{pmatrix} 5 & 1 \\ -2 & -1 \end{pmatrix}$	M1: Correct attempt to double <b>A</b> and subtract <b>B</b> 3 elements correct	M1A1
	$(\mathbf{A} + \mathbf{B})(\mathbf{2A} - \mathbf{B}) = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 5 & 1 \\ -2 & -1 \end{pmatrix}$	A1: Correct matrix	
	$ (\mathbf{A} + \mathbf{B})(\mathbf{2A} - \mathbf{B}) = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 5 & 1 \\ -2 & -1 \end{pmatrix} $ $ \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 5 & 1 \\ -2 & -1 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ -7 & -2 \end{pmatrix} $	M1: Correct method to multiply A1: cao	M1A1
			(6)
(a) Way 2	$(\mathbf{A} + \mathbf{B})(\mathbf{2A} - \mathbf{B}) = 2\mathbf{A}^2 + 2\mathbf{B}\mathbf{A} - \mathbf{A}\mathbf{B} - \mathbf{B}^2$	M1: Expands brackets with at least 3 correct terms A1: Correct expansion	M1A1
	$\mathbf{A}^{2} = \begin{pmatrix} 3 & 2 \\ -2 & -1 \end{pmatrix}, \mathbf{B}\mathbf{A} = \begin{pmatrix} -3 & -1 \\ -1 & 0 \end{pmatrix},$	M1: Attempts $\mathbf{A}^2$ , $\mathbf{B}^2$ and $\mathbf{AB}$ or $\mathbf{BA}$	241 4 1
	$\mathbf{AB} = \begin{pmatrix} -2 & 3\\ 1 & -1 \end{pmatrix}, \mathbf{B}^2 = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}$	A1: Correct matrices	M1A1
	$2 + 2 + 2 \mathbf{D} + \mathbf{A} \mathbf{D} + \mathbf{D}^2 = \begin{pmatrix} 1 & -1 \end{pmatrix}$	M1: Substitutes into their expansion	
	$2\mathbf{A}^2 + 2\mathbf{B}\mathbf{A} - \mathbf{A}\mathbf{B} - \mathbf{B}^2 = \begin{pmatrix} 1 & -1 \\ -7 & -2 \end{pmatrix}$	A1: Correct matrix	M1A1
(b)	$\mathbf{M}\mathbf{C} = \mathbf{A} \Longrightarrow \mathbf{C} = \mathbf{M}^{-1}\mathbf{A}$	May be implied by later work	B1
	$\mathbf{M}^{-1} = \frac{1}{-2 - 7} \begin{pmatrix} -2 & 1\\ 7 & 1 \end{pmatrix}$	An attempt at their $\frac{1}{\det \mathbf{M}} \begin{pmatrix} -2 & 1 \\ 7 & 1 \end{pmatrix}$	M1
	$\mathbf{C} = \frac{1}{-2 - 7} \begin{pmatrix} -2 & 1 \\ 7 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix}$	Correct order required and an attempt to multiply	dM1
	$\mathbf{C} = -\frac{1}{9} \begin{pmatrix} -5 & -2\\ 13 & 7 \end{pmatrix}$	oe	A1
			(4)
			Total 10
(b) Way 2	$ \begin{pmatrix} 1 & -1 \\ -7 & -2 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix} $	Correct statement	B1
	a-c=2, b-d=1 -7a - 2c = -1, -7b - 2d = 0	Multiplies correctly to obtain 4 equations	M1
	$a = \frac{5}{9}, b = \frac{2}{9}, c = -\frac{13}{9}, d = -\frac{7}{9}$	M1: Solves to obtain values for a, b, cand dA1: Correct values	M1A1

Question Number	Scheme		Marks
7.(a)	$y = 2a^{\frac{1}{2}}x^{\frac{1}{2}} \Longrightarrow \frac{dy}{dx} = a^{\frac{1}{2}}x^{-\frac{1}{2}}$ or $y^2 = 4ax \Longrightarrow 2y\frac{dy}{dx} = 4a$ or $\frac{dy}{dx} = \frac{dy}{dp} \cdot \frac{dp}{dx} = 2a \cdot \frac{1}{2ap}$	$\frac{dy}{dx} = k x^{-\frac{1}{2}}$ or $ky \frac{dy}{dx} = c$ their $\frac{dy}{dp} \times \left(\frac{1}{\text{their} \frac{dx}{dp}}\right)$	M1
	$\frac{dy}{dx} = a^{\frac{1}{2}} x^{-\frac{1}{2}} or 2y \frac{dy}{dx} = 4a or \frac{dy}{dx} = 2a \cdot \frac{1}{2ap}$	Correct differentiation	A1
	At <i>P</i> , gradient of normal = $-p$	Correct normal gradient with no errors seen.	A1
	$y - 2ap = -p(x - ap^2)$	Applies $y - 2ap$ = their $m_N (x - ap^2)$ or $y = (\text{their } m_N)x + c$ using $x = ap^2$ and $y = 2ap$ in an attempt to find c. Their $m_N$ must be different from their $m_T$ and must be a function of $p$ .	M1
	$y + px = 2ap + ap^3 *$	cso **given answer**	A1*
			(5)
(b)	$y - px = -2ap - ap^3$	oe	B1
			(1)
(c)	$y = 0 \Longrightarrow x = 2a + ap^2$	M1: $y = 0$ in either normal or solves simultaneously to find x A1: $y = 0$ and correct x coordinate.	M1A1
			(2)
( <b>d</b> )	S is (a, 0)	Can be implied below	B1
	Area SPQP' = $\frac{1}{2} \times ("2a + ap^2" - a) \times 2ap \times 2$	Correct method for the area of the quadrilateral.	M1
	$=2a^2p(1+p^2)$	Any equivalent form	A1
			(3)
			Total 11

Question Number	Scheme		Marks
8.			
	$\frac{12}{7}c = -\frac{1}{t^2} \times -\frac{6}{7}c + \frac{2c}{t}$	Substitutes $\left(-\frac{6}{7}c, \frac{12}{7}c\right)$ into the equation of the tangent	M1
	$\frac{12}{7}c = -\frac{1}{t^2} \times -\frac{6}{7}c + \frac{2c}{t} \Longrightarrow$ $6t^2 - 7t - 3 = 0$	Correct 3TQ in terms of <i>t</i>	A1
	$6t^2 - 7t - 3 = 0 \Longrightarrow (3t + 1)(2t - 3) = 0 \Longrightarrow t =$	Attempt to solve their 3TQ for t	M1
	$t = -\frac{1}{3}, t = \frac{3}{2} \Longrightarrow \left(-\frac{1}{3}c, -3c\right), \left(\frac{3}{2}c, \frac{2}{3}c\right)$	M1: Uses at least one of their values of <i>t</i> to find <i>A</i> or <i>B</i> . A1: Correct coordinates.	M1A1
			(5)
			Total 5

June 2014 (R)

Question Number	Scheme		Marks
<b>9.</b> (a)	When $n = 1$ , rhs = lhs = 2		B1
	Assume true for $n = k$ so $\sum_{r=1}^{k} (r+1)2^{r-1} = k2^{k}$		
	$\sum_{k=1}^{k+1} (r+1)2^{r-1} = k2^{k} + (k+1+1)2^{k+1-1}$	M1: Attempt to add $(k + 1)^{th}$ term	M1A1
	r=1	A1: Correct expression	
	$=k2^{k}+(k+2)2^{k}$		
	$= 2 \times k2^k + 2 \times 2^k$		
	$=(k+1)2^{k+1}$	At least one correct intermediate step required.	A1
	If the result is <b>true for</b> $n = k$ then it has been shown <b>true for</b> $n = k + 1$ . As it is <b>true for</b> $n = 1$ then it is <b>true for all</b> $n$ (positive integers.)	cso, statements can be seen anywhere in the solution.	A1
		Do not award final A if $n$ defined incorrectly e.g. ' $n$ is an integer' award A0	
			(5)
<b>(b)</b>	When $n = 1$ $u_1 = 4^2 - 2^4 = 0$	$4^2 - 2^4 = 0$ seen	B1
	When $n = 2$ $u_2 = 4^3 - 2^5 = 32$	$4^3 - 2^5 = 32$ seen	B1
	True for $n = 1$ and $n = 2$		
	Assume $u_k = 4^{k+1} - 2^{k+3}$ and $u_{k+1} = 4^{k+2} - 2^{k+4}$		
	$u_{k+2} = 6u_{k+1} - 8u_k$	M1: Attempts $u_{k+2}$ in terms of $u_{k+1}$ and $u_k$	M1A1
	$= 6 \left( 4^{k+2} - 2^{k+4} \right) - 8 \left( 4^{k+1} - 2^{k+3} \right)$	A1: Correct expression	
	$= 6.4^{k+2} - 6.2^{k+4} - 8.4^{k+1} + 8.2^{k+3}$		
	$= 6.4^{k+2} - 3.2^{k+5} - 2.4^{k+2} + 2.2^{k+5}$	Attempt $u_{k+2}$ in terms of $4^{k+2}$ and $2^{k+5}$	M1
	$=4.4^{k+2}-2^{k+5}=4^{k+3}-2^{k+5}$		
	So $u_{k+2} = 4^{(k+2)+1} - 2^{(k+2)+3}$	Correct expression	A1
	If the result is true for $n = k$ and $n = k + 1$ then it has been shown true for $n = k + 2$ . As it is true for $n = 1$ and $n = 2$ then it is true for all $n$ (positive integers.)	cso, statements can be seen anywhere in the solution.	A1
		Do not award final A if $n$ defined incorrectly e.g. ' $n$ is an integer' award A0	
			(7)
			Total 12

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE